题目描述

设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号。将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A、B、C,这个状态称为初始状态。

现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态。

移动时有如下要求:

·一次只能移一个盘;

·不允许把大盘移到小盘上面。

输入输出格式

输入格式:

文件第一行是状态中圆盘总数;

第二到第四行分别是初始状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号;

第五到第七行分别是目标状态中A、B、C柱上圆盘的个数和从上到下每个圆盘的编号。

输出格式:

每行一步移动方案,格式为:move I from P to Q

最后一行输出最少的步数。

输入输出样例

输入样例#1:

5
3 3 2 1
2 5 4
0
1 2
3 5 4 3
1 1
输出样例#1:

move 1 from A to B
move 2 from A to C
move 1 from B to C
move 3 from A to B
move 1 from C to B
move 2 from C to A
move 1 from B to C
7

说明

圆盘总数≤45

每行的圆盘描述是从下到上的圆盘编号

Solution:

  最近太蠢了,打了个爆搜,爆$0$`~`。。。

  正解思路实在是巧妙,我们处理出每个盘的起始位置和目标位置,然后贪心的想到,我们应该从大到小让盘依次移到目标位置,移动过程中就是让小盘让路(即移到另一个中间盘上),然后每次就层层递归,输出就好了。(怎么会有这么巧的思路~)

代码:

#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,fr[N],to[N],ans;
string s="ABC"; il void dfs(int u,int v){
if(fr[u]==v)return;
Bor(i,,u-) dfs(i,-fr[u]-v);
printf("move %d from %c to %c\n",u,s[fr[u]-],s[v-]);
fr[u]=v,ans++;
} int main(){
cin>>n;
int t,x;
For(i,,){
cin>>t;
while(t--)cin>>x,fr[x]=i;
}
For(i,,){
cin>>t;
while(t--)cin>>x,to[x]=i;
}
Bor(i,,n) dfs(i,to[i]);
cout<<ans;
return ;
}

P1242 新汉诺塔的更多相关文章

  1. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  2. P1242 新汉诺塔(搜索+模拟退火)

    题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/ ...

  3. 洛谷 P1242 新汉诺塔

    原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...

  4. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  5. 洛谷P1242 新汉诺塔 【神奇的递归】

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

  6. P1242 新汉诺塔(hanio)

    这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio& ...

  7. 大白_uva10795_新汉诺塔

    题意:给出所有盘子的初态和终态,问最少多少步能从初态走到终态,其余规则和老汉诺塔一样. 思路: 若要把当前最大的盘子m从1移动到3,那么首先必须把剩下的所有盘子1~m-1放到2上,然后把m放到3上. ...

  8. UVA 10795 新汉诺塔问题

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa新汉诺塔问题(A Different Task,Uva 10795)

    主要需要理递归函数计算 #define MAXN 60+10 #include<iostream> using namespace std; int n,k,S[MAXN],F[MAXN] ...

随机推荐

  1. 协议:Http Https TCP/IP

    Http协议 1.1 Http概述 HTTP(hypertext transport protocol),即超文本传输协议.这个协议详细规定了浏览器和万维网服务器之间互相通信的规则.HTTP就是一个通 ...

  2. MySql客户端远程连接MySql服务器

    设置MySql服务器以接听端口及以绑定IP地址 MySql服务器默认监听3306端口,确定防火墙以开放此端口. 编辑/etc/my.cnf 添加绑定IP地址.bind-address=192.168. ...

  3. jquery动态改变元素内容

    ● text() - 设置或返回所选元素的文本内容 ● html() - 设置或返回所选元素的内容(包括 HTML 标记) ● val() - 设置或返回表单字段的值(只针对表单或者输入框)

  4. 交换机基础设置之vtp管理vlan设置

    vtp的设置有三种模式1:server模式,负责创建,删除vlan(服务器模式) 2:client模式,负责接收并转发来自server的信息(客户机模式) 3:transparent模式,只负责转发, ...

  5. ES6笔记02-箭头函数

    eg1:// ES5 匿名函数 var total = values.reduce(function (a, b) { return a + b; }, 0); // ES6 匿名函数 var tot ...

  6. myeclipse从SVN上拉项目,各种报错,jar包没有引入

    问:项目中myeclipse从SVN上拉项目,各种报错,jar包没有引入 答: 从SVN拉项目步骤一定不能出错,一有点差异就会出非常多的事情 1-右键项目checkout的时候 第一页选默认值就行 点 ...

  7. Jenkins持续化集成

    Jenkins介绍 Jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作,功能包括: 1.持续的软件版本发布/测试项目. 2.监控外部调用执行的工作. 安装环境 操作系统:lin ...

  8. 【Python3】操作文件,目录和路径

    1.遍历文件夹和文件  Python代码   import os import os.path rootdir = "d:/test" for parent,dirnames,fi ...

  9. GMT 时间格式转换到 TDateTime (Delphi)

    //GMT 时间格式转换到 TDateTime //忽略时区 function GMT2DateTime(const pSour:PAnsiChar):TDateTime; function GetM ...

  10. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...