UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.
Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.
Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.
Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.
Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.
Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
station.
Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N-th station.
The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.
Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible
#include<bits/stdc++.h>
using namespace std;
const int INF = 1e6;
int n,m,T;
int t[60];
int d[260][60];
int ok[260][60][2];
int main()
{
int kase=0;
while(cin>>n,n)
{
cin>>T;
for(int i=1;i<n;i++) cin>>t[i];
int M1;
cin>>M1;
memset(ok,0,sizeof(ok));
for(int i=1;i<=M1;i++)
{
int Tm,j=1;
cin>>Tm;
while(Tm<=T && j<n)
{
ok[Tm][j][0]=1;
Tm+=t[j++];
}
}
int M2;
cin>>M2;
for(int i=1;i<=M2;i++)
{
int Tm,j=n;
cin>>Tm;
while(Tm<=T && j>1)
{
ok[Tm][j][1]=1;
Tm+=t[--j];
}
}
for(int i=1;i<n;i++) d[T][i]=INF;
d[T][n]=0;
for(int i=T-1; i>=0; i--)
{
for(int j=1; j<=n; j++)
{
d[i][j] = d[i+1][j] + 1;
if(j<n && ok[i][j][0] && i+t[j]<=T)
d[i][j]=min(d[i][j],d[i+t[j]][j+1]);
if(j>1 && ok[i][j][1] && i+t[j-1]<=T)
d[i][j]=min(d[i][j],d[i+t[j-1]][j-1]);
}
}
printf("Case Number %d: ", ++kase);
if(d[0][1] > INF) printf("impossible\n");
else printf("%d\n", d[0][1]);
}
}
UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】的更多相关文章
- UVA - 1025 A Spy in the Metro[DP DAG]
UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...
- UVA 1025 -- A Spy in the Metro (DP)
UVA 1025 -- A Spy in the Metro 题意: 一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- uva 1025 A Spy in the Metro 解题报告
A Spy in the Metro Time Limit: 3000MS 64bit IO Format: %lld & %llu Submit Status uDebug Secr ...
- DAG的动态规划 (UVA 1025 A Spy in the Metro)
第一遍,刘汝佳提示+题解:回头再看!!! POINT: dp[time][sta]; 在time时刻在车站sta还需要最少等待多长时间: 终点的状态很确定必然是的 dp[T][N] = 0 ---即在 ...
- UVa 1025 A Spy in the Metro(动态规划)
传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...
- uva 1025 A Spy int the Metro
https://vjudge.net/problem/UVA-1025 看见spy忍俊不禁的想起省赛时不知道spy啥意思 ( >_< f[i][j]表示i时刻处于j站所需的最少等待时间,有 ...
- UVa 1025 A Spy in the Metro
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913 预处理出每个时间.每个车站是否有火车 为了方便判断是否可行,倒推处理 ...
- World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)
分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...
随机推荐
- Pascal数据结构与算法
第一章 数据结构与算法的引入 1.1 数据结构的基本概念 一. 学习数据结构的意义 程序设计 = 数据结构 + 算法 目前,80%的待处理的数据具有“算法简单”(四则运算.检索.排序等),“对象复杂” ...
- 油田(DFS)
//DFS:油田问题 #include <iostream> using namespace std; ][]; int n,m; //一个网格的8个方向 ][] = {{-,-},{-, ...
- 发布“豪情”设计的新博客皮肤-darkgreentrip
豪情 (http://www.cnblogs.com/jikey/)是一名在上海的前端开发人员,长期驻扎在园子里.他为大家设计了一款新的博客皮肤——darkgreentrip. 以下是该博客皮肤的介绍 ...
- 新建git仓库--留
1.git config 配置配置息,查看配置信息
- 从今天开始学Python
外部链接下载吧 1. Python 3.63.chm AIP 帮助文档 下载:https://pan.baidu.com/s/1lhpv8JTC3Z7B6aZ3qQi40g 2. VMwar ...
- STL之queue&stack使用简介
queue 队列也是一个线性存储表,与后进先出的堆栈不同,元素数据的插入在表的一端进行,在另一端删除,从而构成了一个先进先出(First In First Out) 表.插入一端称为队尾,删除一 ...
- 台州学院we are without brain 训练 后缀数组
sa[i]表示排名为 i 的后缀的第一个字符在原串中的位置 rank[i]表示按照从小到大排名 以i为下标开始的后缀的排名 height[i]表示排名为 i 和排名为 i+1的后缀的最长公共前缀的长 ...
- Qt编程的一些技巧
1.Qt程序在运行过程中,调用函数(如lcdNumber->display(num))显示数据到界面上时,并不会马上刷新屏幕显示,而是要等主程序运行到函数a.exec()时,才刷新屏幕,如下 因 ...
- 多线程 线程池 ExecutorService
package org.zln.thread; import java.util.Date; import java.util.concurrent.ExecutorService; import j ...
- 不允许有匹配 "[xX][mM][lL]" 的处理指令目标。
xml文件报错: 不允许有匹配 "[xX][mM][lL]" 的处理指令目标. 指的注意的是规范的XML格式: <?xml version="1.0" ...