Description

Harry Potter 新学了一种魔法:可以让改变树上的果子个数。满心欢喜的他找到了一个巨大的果树,来试验他的新法术。

这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa[u] < u。初始时,这棵果树上的果子都被 Dumbledore 用魔法清除掉了,所以这个果树的每个节点上都没有果子(即0个果子)。

不幸的是,Harry 的法术学得不到位,只能对树上一段路径的节点上的果子个数统一增加一定的数量。也就是说,Harry 的魔法可以这样描述:

Add u v d

表示将点u和v之间的路径上的所有节点的果子个数都加上d。

接下来,为了方便检验 Harry 的魔法是否成功,你需要告诉他在释放魔法的过程中的一些有关果树的信息:

Query u

表示当前果树中,以点u为根的子树中,总共有多少个果子?

Input

第一行一个正整数N (1 ≤ N ≤ 100000),表示果树的节点总数,节点以0,1,…,N − 1标号,0一定代表根节点。

接下来N − 1行,每行两个整数a,b (0 ≤ a < b < N),表示a是b的父亲。

接下来是一个正整数Q(1 ≤ ? ≤ 100000),表示共有Q次操作。

后面跟着Q行,每行是以下两种中的一种:

  1. A u v d,表示将u到v的路径上的所有节点的果子数加上d;0 ≤ u,v <N,0 < d < 100000
  2. Q u,表示询问以u为根的子树中的总果子数,注意是包括u本身的。

Output

对于所有的Query操作,依次输出询问的答案,每行一个。答案可能会超过2^32 ,但不会超过10^15 。

刚刚学树剖练练手,一个树剖裸题,线段树不需要建树.

话说省选竟然会考模板题emm

PS:数组开大,开$long \ long $,还有记得用字符串读入,不要用单个字符。

代码

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define int long long
#define R register
#define ls o<<1
#define rs o<<1|1
#define N 200008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,head[N],tot,depth[N],size[N],son[N],dfn[N],fdfn[N],f[N];
struct cod{int u,v;}edge[N<<1];
int idx,m,top[N],tr[N<<2],tg[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs1(int u,int fa)
{
depth[u]=depth[fa]+1;size[u]=1;f[u]=fa;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
void dfs2(int u,int t)
{
top[u]=t;dfn[u]=++idx;fdfn[idx]=u;
if(son[u]==-1)return;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=(mid-l+1)*tg[o];tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
tr[o]=tr[ls]+tr[rs];
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int mid=(l+r)>>1,res=0;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
inline void tchange(int x,int y,int z)
{
int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
change(1,1,idx,dfn[fx],dfn[x],z);
x=f[fx];
}
else
{
change(1,1,idx,dfn[fy],dfn[y],z);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(dfn[x]>dfn[y])swap(x,y);
change(1,1,idx,dfn[x],dfn[y],z);
}
signed main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
x++,y++;
add(x,y);add(y,x);
}
dfs1(1,0);dfs2(1,1);
in(m);
for(R int x,y,z;m;m--)
{
R char opt[8];
scanf("%s",opt);
switch(opt[0])
{
case 'A':in(x),in(y),in(z);x++;y++;tchange(x,y,z);break;
case 'Q':in(x);x++;printf("%lld\n",query(1,1,n,dfn[x],dfn[x]+size[x]-1));break;
}
}
}

树链剖分【P3833】 [SHOI2012]魔法树的更多相关文章

  1. 洛谷——P3833 [SHOI2012]魔法树

    P3833 [SHOI2012]魔法树 题目背景 SHOI2012 D2T3 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的 ...

  2. 洛谷 P3833 [SHOI2012]魔法树

    题目背景 SHOI2012 D2T3 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节点 ...

  3. P3833 [SHOI2012]魔法树

    思路 树剖板子 注意给出点的编号是从零开始的 代码 #include <cstdio> #include <algorithm> #include <cstring> ...

  4. [洛谷P3833][SHOI2012]魔法树

    题目大意:给一棵树,路径加,子树求和 题解:树剖 卡点:无 C++ Code: #include <cstdio> #include <iostream> #define ma ...

  5. P3833 [SHOI2012]魔法树 (树链剖分模板题)

    题目链接:https://www.luogu.org/problem/P3833 题目大意:有一颗含有n个节点的树,初始时每个节点的值为0,有以下两种操作: 1.Add u v d表示将点u和v之间的 ...

  6. 【树链剖分】【dfs序】【线段树】bzoj2836 魔法树

    这道题告诉我们:树链剖分的重标号就是dfs序. #include<cstdio> #include<algorithm> using namespace std; #defin ...

  7. 【SHOI2012】魔法树(树链剖分,线段树)

    [SHOI2012]魔法树 题面 BZOJ上找不到这道题目 只有洛谷上有.. 所以粘贴洛谷的题面 题解 树链剖分之后直接维护线段树就可以了 树链剖分良心模板题 #include<iostream ...

  8. BZOJ2863[SHOI2012]魔法树——树链剖分+线段树

    题目描述 输入 输出 样例输入 4 0 1 1 2 2 3 4 Add 1 3 1 Query 0 Query 1 Query 2 样例输出 3 3 2   树链剖分模板题,路径修改子树查询,注意节点 ...

  9. 【BZOJ-2836】魔法树 树链剖分

    2836: 魔法树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 323  Solved: 129[Submit][Status][Discuss] ...

  10. 树链剖分好(du)题(liu)选做

    1.luogu P4315 月下"毛景树" 题目链接 前言: 这大概是本蒟蒻A掉的题里面码量最大的一道题了.我自认为码风比较紧凑,但还是写了175行. 从下午2点多调到晚上8点.中 ...

随机推荐

  1. 【Feasibility of Learning】林轩田机器学习基石

    这一节的核心内容在于如何由hoeffding不等式 关联到机器学习的可行性. 这个PAC很形象又准确,描述了“当前的可能性大概是正确的”,即某个概率的上届. hoeffding在机器学习上的关联就是: ...

  2. [译]9-spring bean的生命周期

    spring中bean的生命周期比较容易理解.bean在实例化之后有时需要调用某个初始化方法进行一些初始化的工作.同样的 ,当bean在销毁之前有时需要做一些资源回收的工作. 尽管bean在实例化和销 ...

  3. 孤荷凌寒自学python第三十九天python 的线程锁Lock

    孤荷凌寒自学python第三十九天python的线程锁Lock (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 当多个线程同时操作一个文件等需要同时操作某一对象的情况发生时,很有可能发生冲突, ...

  4. Wordpress 为用户或角色 role 添加 capabilities(权限)

    首先查看角色具有哪些权限: $admin_role_set = get_role( 'administrator' )->capabilities; $author_role_set = get ...

  5. Python的HttpClient实现

    Python版本3.4(注意python的版本,python2和python3的写法不一样) 其实无非就是客户端的请求,所以python中这里使用的是urllib.request模块.主要注意的是he ...

  6. DB2数据库的日志文件管理

    DB2数据库的日志文件管理 DB2的日志模式 1.1循环日志 当循环日志生效时,事务数据将通过循环的方式写入主要日志文件.当存储于某个日志文件中的所有记录都不再需要用于恢复时,该日志文件将被重用,并且 ...

  7. hdu1877进制转换

    #include <stdio.h> int m; void Ck(int n) { if(n>=m) Ck(n/m); printf("%d",n%m); } ...

  8. CORS跨域cookie传递

    服务端 Access-Control-Allow-Credentials:true Access-Control-Allow-Methods:* Access-Control-Allow-Origin ...

  9. Maven项目消除奇怪的红叉

    当项目截然无误,然则Eclipse总是出现红叉的时候,右键点击项目->Maven->Update Project-,进而纠正之.很简答的操作. 木头大哥所发的文章均基于自身实践,各位江湖好 ...

  10. 《R语言实战》读书笔记 第七章--基本统计分析

    在导入数据并且将数据进行组织和初步可视化以后,需要对数据进行分布探索和两两关系分析等.主要内容有描述性统计分析.频数表和列联表.相关系数和协方差.t检验.非参数统计. 7.1描述性统计分析 7.1.1 ...