Description

Harry Potter 新学了一种魔法:可以让改变树上的果子个数。满心欢喜的他找到了一个巨大的果树,来试验他的新法术。

这棵果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u],保证有fa[u] < u。初始时,这棵果树上的果子都被 Dumbledore 用魔法清除掉了,所以这个果树的每个节点上都没有果子(即0个果子)。

不幸的是,Harry 的法术学得不到位,只能对树上一段路径的节点上的果子个数统一增加一定的数量。也就是说,Harry 的魔法可以这样描述:

Add u v d

表示将点u和v之间的路径上的所有节点的果子个数都加上d。

接下来,为了方便检验 Harry 的魔法是否成功,你需要告诉他在释放魔法的过程中的一些有关果树的信息:

Query u

表示当前果树中,以点u为根的子树中,总共有多少个果子?

Input

第一行一个正整数N (1 ≤ N ≤ 100000),表示果树的节点总数,节点以0,1,…,N − 1标号,0一定代表根节点。

接下来N − 1行,每行两个整数a,b (0 ≤ a < b < N),表示a是b的父亲。

接下来是一个正整数Q(1 ≤ ? ≤ 100000),表示共有Q次操作。

后面跟着Q行,每行是以下两种中的一种:

  1. A u v d,表示将u到v的路径上的所有节点的果子数加上d;0 ≤ u,v <N,0 < d < 100000
  2. Q u,表示询问以u为根的子树中的总果子数,注意是包括u本身的。

Output

对于所有的Query操作,依次输出询问的答案,每行一个。答案可能会超过2^32 ,但不会超过10^15 。

刚刚学树剖练练手,一个树剖裸题,线段树不需要建树.

话说省选竟然会考模板题emm

PS:数组开大,开$long \ long $,还有记得用字符串读入,不要用单个字符。

代码

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define int long long
#define R register
#define ls o<<1
#define rs o<<1|1
#define N 200008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,head[N],tot,depth[N],size[N],son[N],dfn[N],fdfn[N],f[N];
struct cod{int u,v;}edge[N<<1];
int idx,m,top[N],tr[N<<2],tg[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs1(int u,int fa)
{
depth[u]=depth[fa]+1;size[u]=1;f[u]=fa;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
void dfs2(int u,int t)
{
top[u]=t;dfn[u]=++idx;fdfn[idx]=u;
if(son[u]==-1)return;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=(mid-l+1)*tg[o];tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
tr[o]=tr[ls]+tr[rs];
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int mid=(l+r)>>1,res=0;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
inline void tchange(int x,int y,int z)
{
int fx=top[x],fy=top[y];
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
change(1,1,idx,dfn[fx],dfn[x],z);
x=f[fx];
}
else
{
change(1,1,idx,dfn[fy],dfn[y],z);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(dfn[x]>dfn[y])swap(x,y);
change(1,1,idx,dfn[x],dfn[y],z);
}
signed main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
x++,y++;
add(x,y);add(y,x);
}
dfs1(1,0);dfs2(1,1);
in(m);
for(R int x,y,z;m;m--)
{
R char opt[8];
scanf("%s",opt);
switch(opt[0])
{
case 'A':in(x),in(y),in(z);x++;y++;tchange(x,y,z);break;
case 'Q':in(x);x++;printf("%lld\n",query(1,1,n,dfn[x],dfn[x]+size[x]-1));break;
}
}
}

树链剖分【P3833】 [SHOI2012]魔法树的更多相关文章

  1. 洛谷——P3833 [SHOI2012]魔法树

    P3833 [SHOI2012]魔法树 题目背景 SHOI2012 D2T3 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的 ...

  2. 洛谷 P3833 [SHOI2012]魔法树

    题目背景 SHOI2012 D2T3 题目描述 Harry Potter 新学了一种魔法:可以让改变树上的果子个数.满心欢喜的他找到了一个巨大的果树,来试验他的新法术. 这棵果树共有N个节点,其中节点 ...

  3. P3833 [SHOI2012]魔法树

    思路 树剖板子 注意给出点的编号是从零开始的 代码 #include <cstdio> #include <algorithm> #include <cstring> ...

  4. [洛谷P3833][SHOI2012]魔法树

    题目大意:给一棵树,路径加,子树求和 题解:树剖 卡点:无 C++ Code: #include <cstdio> #include <iostream> #define ma ...

  5. P3833 [SHOI2012]魔法树 (树链剖分模板题)

    题目链接:https://www.luogu.org/problem/P3833 题目大意:有一颗含有n个节点的树,初始时每个节点的值为0,有以下两种操作: 1.Add u v d表示将点u和v之间的 ...

  6. 【树链剖分】【dfs序】【线段树】bzoj2836 魔法树

    这道题告诉我们:树链剖分的重标号就是dfs序. #include<cstdio> #include<algorithm> using namespace std; #defin ...

  7. 【SHOI2012】魔法树(树链剖分,线段树)

    [SHOI2012]魔法树 题面 BZOJ上找不到这道题目 只有洛谷上有.. 所以粘贴洛谷的题面 题解 树链剖分之后直接维护线段树就可以了 树链剖分良心模板题 #include<iostream ...

  8. BZOJ2863[SHOI2012]魔法树——树链剖分+线段树

    题目描述 输入 输出 样例输入 4 0 1 1 2 2 3 4 Add 1 3 1 Query 0 Query 1 Query 2 样例输出 3 3 2   树链剖分模板题,路径修改子树查询,注意节点 ...

  9. 【BZOJ-2836】魔法树 树链剖分

    2836: 魔法树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 323  Solved: 129[Submit][Status][Discuss] ...

  10. 树链剖分好(du)题(liu)选做

    1.luogu P4315 月下"毛景树" 题目链接 前言: 这大概是本蒟蒻A掉的题里面码量最大的一道题了.我自认为码风比较紧凑,但还是写了175行. 从下午2点多调到晚上8点.中 ...

随机推荐

  1. (原)Unreal 渲染模块引言Temp

            @author:白袍小道     引言 本文只在对Unreal渲染模块做一些详细的理解,务求能分析出个大概. 其中框架的思想和实现的过程,是非常值得学习和推敲一二的. 涉及资源系统,材 ...

  2. diskimage-builder

    Supported Distributions Distributions which are supported as a build host: Centos 6, 7 Debian 8 (“je ...

  3. Ext中关于Ext.QuickTips.init()的使用

    在extJS的例子中,大部分都在程序第一行使用了如下语句:Ext.QuickTips.init();但是QuickTips的用处是什么呢?我们看一段最简单的代码: <html> <h ...

  4. .net的CLR

    搜索:CLR结构图 C#所具有的许多特点都是由CLR提供的,如类型安全(Type Checker).垃圾回收(Garbage Collector).异常处理(Exception Manager).向下 ...

  5. 201621123034 《Java程序设计》第9周学习总结

    作业09-集合与泛型 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 答:Map的HashMap中使用嵌套类static class Node<K,V& ...

  6. DP石子合并问题

    转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735 [石子合并]    在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序 ...

  7. [poj] 3347 Kadj Square || 计算几何的“线段覆盖”

    原题 多组数据,给出n个正方形的边长,使他们以45度角倾斜的情况下最靠左(在第一象限内),如图.求从上看能看到哪几个完整的正方形. 借鉴于https://www.cnblogs.com/Ritchie ...

  8. 3.1 Java以及Lucene的安装与配置

    Lucene是Java开发的一套用于全文检索和搜索的开源程序库,它面向对象多层封装,提供了一个低耦合.与平台无关的.可进行二次开发的全文检索引擎架构,是这几年最受欢迎的信息检索程序库[1].对Luce ...

  9. C语言.c和.h

    简单的说其实要理解C文件与头文件(即.h)有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程:       1.预处理阶段 2.词法与语法分析阶段 3.编译阶段,首先编译成 ...

  10. shell面试经典70例

    转载自:http://www.imooc.com/article/1131 1) 如何向脚本传递参数 ? ./script argument 例子: 显示文件名称脚本 ./show.sh file1. ...