关于Bayes网络新解
- 经典贝叶斯网络
贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种,分别是:Naive Bayes、TAN、BAN 和 GBN。贝叶斯网络是一个带有概率注释的有向无环图,图中的每一个结点均表示一个随机变量,图中两结点间若存在着一条弧,则表示这两结点相对应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的。网络中任意一个结点 X 均有一个相应的条件概率表(Conditional Probability Table,CPT),用以表示结点 X 在其父结点取各可能值时的条件概率。若结点 X 无父结点,则 X 的 CPT 为其先验概率分布。贝叶斯网络的结构及各结点的 CPT 定义了网络中各变量的概率分布。贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点 C,其中 C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点 X = ( X1 , X2 , ... , Xn),表示用于分类的特征。
对于贝叶斯网络分类器,若某一待分类的样本 D,其分类特征值为 x = ( x1 , x2 , ... , x n) ,则样本 D 属于类别 ci 的概率 P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) , ( i = 1 ,2 , ... , m) 应满足下式:
P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) }
而由贝叶斯公式:
P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x)
其中, P( C = ci) 可由领域专家的经验得到,而 P( X = x | C = ci) 和 P( X = x) 的计算则较困难。应用贝叶斯网络分类器进行分类主要分成两阶段。第一阶段是贝叶斯网络分类器的学习,即从样本数据中构造分类器,包括结构学习和 CPT 学习;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。这两个阶段的时间复杂性均取决于特征值间的依赖程度,甚至可以是 NP 完全问题,因而在实际应用中,往往需要对贝叶斯网络分类器进行简化。根据对特征值间不同关联程度的假设,可以得出各种贝叶斯分类器,Naive Bayes、TAN、BAN、GBN 就是其中较典型、研究较深入的贝叶斯分类器。
- 简化贝叶斯
分类是将一个未知样本分到几个预先已知类的过程。数据分类问题的解决是一个两步过程:第一步,建立一个模型,描述预先的数据集或概念集。通过分析由属性描述的样本(或实例,对象等)来构造模型。假定每一个样本都有一个预先定义的类,由一个被称为类标签的属性确定。为建立模型而被分析的数据元组形成训练数据集,该步也称作有指导的学习。在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。决策树模型通过构造树来解决分类问题。首先利用训练数据集来构造一棵决策树,一旦树建立起来,它就可为未知样本产生一个分类。在分类问题中使用决策树模型有很多的优点,决策树便于使用,而且高效;根据决策树可以很容易地构造出规则,而规则通常易于解释和理解;决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小;决策树模型的另外一大优点就是可以对有许多属性的数据集构造决策树。决策树模型也有一些缺点,比如处理缺失数据时的困难,过度拟合问题的出现,以及忽略数据集中属性之间的相关性等。和决策树模型相比,朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC 模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上, NBC 模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为 NBC 模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC 模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC 模型的性能最为良好。假设数据集合为D,H为假设空间(类别空间),h为其中一假设,hMAP为假设空间上的最大后验概率。

上面的hMAP为推导的基础,那么贝叶斯问题的推导大致要经过以下几个步骤:

其中对于最大概率模型来说,P(a1,a2...an)不是我们关心的问题,由此可以退化为如下表达式

那么上述式子中P(a1,a2...an | vj )的求解是一个NP问题,所以需要简化,对于朴素贝叶斯来说:

vMAP可以退化为vNB,

对于经典天气问题,最终的朴素表达式如下:

关于Bayes网络新解的更多相关文章
- [Machine Learning] Probabilistic Graphical Models:二、Bayes Network Fundamentals(1、Semantics & Factorization)
一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = c ...
- Multi-label && Multi-label classification
Multi-label classification with Keras In today’s blog post you learned how to perform multi-label cl ...
- 网络编程之socket新解
由于工作并不是很忙,闲暇之余就读了下tomcat的源代码.我是从事java服务器开发工作的,大体的一些服务器线程模型我都是了解的.其大部分都是由一个线程调用监听端口等待客户端的链接,建立连接后再交由其 ...
- FCN网络的训练——以SIFT-Flow 数据集为例
参考文章: http://blog.csdn.net/u013059662/article/details/52770198 caffe的安装配置,以及fcn的使用在我前边的文章当中都已经提及到了,这 ...
- Sprintf新解 (ZT)
Sprintf新解 2012-08-06 11:26:45 分类: 原文地址:Sprintf新解 作者:harserm 由于sprintf 跟printf 在用法上几乎一样,只是打印的目的地不同而已 ...
- Microsoft Naive Bayes 算法——三国人物身份划分
Microsoft朴素贝叶斯是SSAS中最简单的算法,通常用作理解数据基本分组的起点.这类处理的一般特征就是分类.这个算法之所以称为“朴素”,是因为所有属性的重要性是一样的,没有谁比谁更高.贝叶斯之名 ...
- 机器学习&数据挖掘笔记_18(PGM练习二:贝叶斯网络在遗传图谱在的应用)
前言: 这是coursera课程:Probabilistic Graphical Models上的第二个实验,主要是用贝叶斯网络对基因遗传问题进行一些计算.具体实验内容可参考实验指导教材:bayes ...
- lecture11-hopfiled网络与玻尔兹曼机
Hinton课程第11课 这部分的课程算是个知识背景,讲述RBM的来源吧,毕竟是按照hopfield--BM-RBM的路线过来的. 因为水平有限,都是直译,如果纠结某句话,肯定看不懂,所以这些课程只需 ...
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
随机推荐
- 关于JavaScriptSerializer使用的问题
初学C#的同学们,你们有没有这样的问题:遇到不懂的问题,就到处搜索,好不容易搜索出来答案吧,却发现缺少引用,缺少引用就添加引用吧,结果在添加中找不到!是不是很恼火? 解决办法:查看项目的目标框架,如果 ...
- Appium 环境搭建
1.安装nodejs 下载地址: http://nodejs.org/download/ 下载之后一路next就好. 验证是否安装成功: node -v
- J - Assign the task - hdu 3974(DFS建树+简单线段树)
题意:给一些节点简单额对应关系,可以组成一个树,如果树的某一个节点更新那么他的所有子节点都要更新,中间,会有一些查询 分析:题意倒也不难理解,但是但是不知道怎么建树...于是自能百度,看了kuangb ...
- ASP.NET 之深入浅出Session和Cookie
在做人事档案管理系统中,对于Session和Cookie的使用后理解更加深刻了,下面对本知识点总结学习. Session是什么? 简单来说就是服务器给客户端的一个编号.当一台WWW服务器运行时,可能有 ...
- Check the quota usage
stack@ubuntu1:~/Downloads$ nova absolute-limits +--------------------+------+-------+ | Name | Used ...
- Android ExpandableListView BaseExpandableListAdapter (类似QQ分组列表)
分组列表视图(ExpandableListView) 和ListView不同的是它是一个两级的滚动列表视图,每一个组可以展开,显示一些子项,类似于QQ列表,这些项目来至于ExpandableListA ...
- [Javascript] Refactoring: Polymorphic Functions
if-statements can add serious complexity and beg for refactoring. You can use polymorphic functions ...
- [Javascript] Advanced Reduce: Common Mistakes
Take away: Always check you ruturn the accumulator Always pass in the inital value var data = [" ...
- Android - ContentProvider机制
以下资料摘录整理自老罗的Android之旅博客,是对老罗的博客关于Android底层原理的一个抽象的知识概括总结(如有错误欢迎指出)(侵删):http://blog.csdn.net/luosheng ...
- Android中ListView的优化
第一种方法 重用了convertView,很大程度上的减少了内存的消耗.通过判断convertView是否为null,是的话就需要产生一个视图出来,然后给这个视图数据,最后将这个视图返回给底层,呈献给 ...