E - LIS

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

 

Description

The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned about the evolution of the stock exchange. He follows stock prices every day looking for rising trends. Given a sequence of numbers p1, p2,...,pn representing stock prices, a rising trend is a subsequence pi1 < pi2 < ... < pik, with i1 < i2 < ... < ik. John’s problem is to find very quickly the longest rising trend.

Input

Each data set in the file stands for a particular set of stock prices. A data set starts with the length L (L ≤ 100000) of the sequence of numbers, followed by the numbers (a number fits a long integer). 
White spaces can occur freely in the input. The input data are correct and terminate with an end of file.

Output

The program prints the length of the longest rising trend. 
For each set of data the program prints the result to the standard output from the beginning of a line.

Sample Input

6
5 2 1 4 5 3
3
1 1 1
4
4 3 2 1

Sample Output

3
1
1

Hint

There are three data sets. In the first case, the length L of the sequence is 6. The sequence is 5, 2, 1, 4, 5, 3. The result for the data set is the length of the longest rising trend: 3.
 
 
题解:LIS最长上升子序列问题  给出一个序列,从左到右的顺序选出尽量多的整数,组成一个上升子序列。
 
#include<cstdio>
int a[100001], f[100001];
int main()
{
int n, k, l, r, mid;
while (scanf("%d",&n)==1)
{
for (int i = 0; i < n; i++)
scanf("%d",&a[i]);
k = 0;
f[0] = -1; //赋初值,小于0即可
for (int i = 0; i < n; i++)
{
if (a[i] > f[k])
{
k++;
f[k] = a[i]; //每找到一个就保存到f【】数组里
}
else
{
l = 1, r = k;
while (l<=r) //判断此时的a[i]和f数组中各个值大小关系,直到找到最优值
{
mid = (l + r) / 2;
if (a[i] > f[mid])
l = mid + 1;
else
r = mid - 1;
}
f[l] = a[i];
}
}
printf("%d\n",k);
} }

POJ - 3903 Stock Exchange(LIS最长上升子序列问题)的更多相关文章

  1. poj 3903 Stock Exchange(最长上升子序列,模版题)

    题目 #include<stdio.h> //最长上升子序列 nlogn //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现 //数组下标从1号开始. int bs ...

  2. {POJ}{3903}{Stock Exchange}{nlogn 最长上升子序列}

    题意:求最长上升子序列,n=100000 思路:O(N^2)铁定超时啊....利用贪心的思想去找答案.利用栈,每次输入数据检查栈,二分查找替换掉最小比他大的数据,这样得到的栈就是更优的.这个题目确实不 ...

  3. POJ 3903 Stock Exchange 【最长上升子序列】模板题

    <题目链接> 题目大意: 裸的DP最长上升子序列,给你一段序列,求其最长上升子序列的长度,n^2的dp朴素算法过不了,这里用的是nlogn的算法,用了二分查找. O(nlogn)算法 #i ...

  4. POJ3903 Stock Exchange LIS最长上升子序列

    POJ3903 Stock Exchange #include <iostream> #include <cstdio> #include <vector> #in ...

  5. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  6. LIS(nlogn) POJ 3903 Stock Exchange

    题目传送门 题意:LIS最长递增子序列 O(nlogn) 分析:设当前最长递增子序列为len,考虑元素a[i]; 若d[len]<a[i],则len++,并使d[len]=a[i]; 否则,在d ...

  7. POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)

    POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...

  8. Poj 3903 Stock Exchange(LIS)

    一.Description The world financial crisis is quite a subject. Some people are more relaxed while othe ...

  9. POJ 3903 Stock Exchange 最长上升子序列入门题

    题目链接:http://poj.org/problem?id=3903 最长上升子序列入门题. 算法时间复杂度 O(n*logn) . 代码: #include <iostream> #i ...

随机推荐

  1. 对Spring的一些理解

    最近在复习一些关于框架的概念性问题,主要是为了最近的面试,怕被问到这些概念性的问题.不过在真正做开发的时候还是要好好理解这些框架的基本原理,以及它们的工作流程.这样,我们才能更好的使用这些框架.下面就 ...

  2. web.xml基本配置描述

    先加载一段写好的web.xml: <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2. ...

  3. Hibernate详解(5)——Hibernate核心接口和工作原理

    Hibernate核心接口 Hibernate有五大核心接口,分别是:Session Transaction Query SessionFactoryConfiguration .这五个接口构成了Hi ...

  4. ios 打电话结束返回到应用中

    在我们做打电话这个功能时,我们常常是调用这个方法: [[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"tel ...

  5. FFmpeg的HEVC解码器源码简单分析:解析器(Parser)部分

    ===================================================== HEVC源码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpeg ...

  6. Meth | elementary OS常用配置

    一,搜狗输入法 sudo apt-get remove ibussudo add-apt-repository ppa:fcitx-team/nightlysudo apt-get updatesud ...

  7. LeanCloud使用入门(android)

    LeanCloud算是一个简单易用的云服务器,其中包含了强大的数据库支持,我们只需要将此服务器应用到本地的代码即可实现后台的存储与交互. 那么,如何简单实现本地代码和LeanCloud服务器的交互呢? ...

  8. Python中利用函数装饰器实现备忘功能

    Python中利用函数装饰器实现备忘功能 这篇文章主要介绍了Python中利用函数装饰器实现备忘功能,同时还降到了利用装饰器来检查函数的递归.确保参数传递的正确,需要的朋友可以参考下   " ...

  9. ExecuteReader执行查询实例

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  10. 新闻web小酌

    首页如上 类图如下: 添加新闻的方法(dao): public boolean Add(News news) { boolean flag=false; Connection con =getConn ...