hdu4549之矩阵快速幂
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 926 Accepted Submission(s): 267
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
6 10 2
60
分析:F[2]=F[1]*F[0],F[3]=F[2]*F[1]=F[1]^2*F[0],F[4]=F[1]^3*F[0]^2...==>F[n]=F[1]^f(n-1) * F[0]^f(n-2);//f(n)表示第n个斐波那契数
所以只要求a^f(n-2) * b^f(n-1),但是f(n)将非常大(超过64位),这时候就要知道有个费马小定理了:(a^b)%mod =a^( b%(mod-1) )%mod
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<vector>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=10;
const int mod=1000000007;
__int64 sum[2][2],array[2][2]; void MatrixMult(__int64 a[2][2],__int64 b[2][2]){
__int64 c[2][2];
c[0][0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];
c[0][1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];
c[1][0]=a[1][0]*b[0][0]+a[1][1]*b[1][0];
c[1][1]=a[1][0]*b[0][1]+a[1][1]*b[1][1];
for(int i=0;i<2;++i){
for(int j=0;j<2;++j)a[i][j]=c[i][j]%(mod-1);
}
} int Matrix(int k){
array[0][0]=0;
array[0][1]=array[1][0]=array[1][1]=1;
while(k){
if(k&1)MatrixMult(sum,array);
MatrixMult(array,array);
k>>=1;
}
return (sum[0][0]+sum[0][1])%(mod-1);
} __int64 FastPower(__int64 a,int k){
__int64 ans=1;
while(k){
if(k&1)ans=(ans*a)%mod;
a=(a*a)%mod;
k>>=1;
}
return ans;
} int main(){
__int64 a,b,n;
while(cin>>a>>b>>n){
if(n<2){printf("%I64d\n",n?b:a);continue;}
sum[0][0]=sum[1][1]=1;
sum[0][1]=sum[1][0]=0;
int i=Matrix(n-2);
int j=Matrix(1);
printf("%I64d\n",(FastPower(a,i)*FastPower(b,j))%mod);
}
return 0;
}
hdu4549之矩阵快速幂的更多相关文章
- 求幂大法,矩阵快速幂,快速幂模板题--hdu4549
hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- hdu4549矩阵快速幂+费马小定理
转移矩阵很容易求就是|0 1|,第一项是|0| |1 1| |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
随机推荐
- OC - 22.隐式动画
简介 每个UI控件,默认自动创建一个图层(根图层),即每个UI控件对应于至少一个图层 每一个UIView内部都默认关联着一个CALayer,我们可用称这个Layer为Root Layer(根层) ...
- JavaScript HTML DOM 元素(节点)
JavaScript HTML DOM 元素(节点) 创建新的 HTML 元素 创建新的 HTML 元素 如需向 HTML DOM 添加新元素,您必须首先创建该元素(元素节点),然后向一个已存在的元素 ...
- [转]MySQL数据库备份和还原的常用命令小结
MySQL数据库备份和还原的常用命令小结,学习mysql的朋友可以参考下: 备份MySQL数据库的命令 mysqldump -hhostname -uusername -ppassword datab ...
- CPU风扇故障导致自动关机
今天在使用电脑时,突然自动关机,重启后过一段时间又自动关机,于是打开机箱后盖,插上电源观察各个部位运行情况,发现CPU风扇不转,判断问题就是由于CPU温度太高了.于是换个风扇,再开机情况就正常了.
- 在2015中使用V12版本的ReportView控件,会导致winform窗体不能正常打开
在2015中使用V12版本的ReportView控件,会导致winform窗体不能正常打开,使用V10版本没问题,但2015中默认使用的就是V12版本,所以需要避免使用V12版本
- int*-------int
a=(int)((int*)0 + 4)求a是多少 大家看图应该明白了 十六进制0x00000010转换为十进制就是16
- if exists和if not exists关键字用法
在sql语名中,if not exists 即如果不存在,if exists 即如果存在. 下面学习下二者的用法. a,判断数据库不存在时 代码示例: if not exists(select * f ...
- nutch,hbase,zookeeper兼容性问题
nutch-2.1使用gora-0.2.1, gora-0.2.1使用hbase-0.90.4,hbase-0.90.4和hadoop-1.1.1不兼容,hbase-0.94.4和gora-0.2.1 ...
- Mysql 授权访问
' WITH GRANT OPTION; FLUSH PRIVILEGES; 这就是设置一个 urser:root pwd: 账号,该账号可以在任何机器,同时访问服务器
- Node.js缓冲器
纯JavaScript是Unicode友好的,但对二进制数据不是很好.当与TCP流或文件系统打交道时,有必要处理字节流. Node提供缓冲器类,它提供实例来存储原始数据相似的一个整数数组,但对应于在V ...