1. 导入各种模块

基本形式为:

import 模块名

from 某个文件 import 某个模块

2. 导入数据(以两类分类问题为例,即numClass = 2)

训练集数据data

可以看到,data是一个四维的ndarray

训练集的标签

3. 将导入的数据转化我keras可以接受的数据格式

keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数

label = np_utils.to_categorical(label, numClass

此时的label变为了如下形式

(注:PyCharm无法显示那么多的数据,所以下面才只显示了1000个数据,实际上该例子所示的数据集有1223个数据)

  

4. 建立CNN模型

以下图所示的CNN网络为例

#生成一个model
model = Sequential() #layer1-conv1
model.add(Convolution2D(16, 3, 3, border_mode='valid',input_shape=data.shape[-3:]))
model.add(Activation('tanh'))#tanh # layer2-conv2
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh # layer3-conv3
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh # layer4
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))#tanh # layer5-fully connect
model.add(Dense(numClass, init='normal'))
model.add(Activation('softmax'))
#  
sgd = SGD(l2=0.1,lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")

5. 开始训练model

利用model.train_on_batch或者model.fit

  

Keras如何构造简单的CNN网络的更多相关文章

  1. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  2. 数据挖掘入门系列教程(十一点五)之CNN网络介绍

    在前面的两篇博客中,我们介绍了DNN(深度神经网络)并使用keras实现了一个简单的DNN.在这篇博客中将介绍CNN(卷积神经网络),然后在下一篇博客中将使用keras构建一个简单的CNN,对cifa ...

  3. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet

    上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...

  4. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  5. TensorflowTutorial_一维数据构造简单CNN

    使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网 ...

  6. tensorflow实现一个神经网络简单CNN网络

    本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测. 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist = input_da ...

  7. 6.keras-基于CNN网络的Mnist数据集分类

    keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...

  8. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg

    上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得 ...

  9. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

随机推荐

  1. IOS关于XIB文件和调试时候显示不一样问题

    1 前言 今天工作中,遇到了一个xib文件布局问题,具体问题如下:在xib中加了一个图片,背景为已经切好的图片,但是当显示在模拟器上面的时候却显示不出来效果. 2 详述 2.1 问题截图      如 ...

  2. RichtextBox去除闪烁光标

    http://files.cnblogs.com/xe2011/CustomRichTextBox_HideCaret.rar richTextBox能高亮选择,光标仍在,没有光标闪烁 把重RichT ...

  3. SOA是什么

    一.SOA是什么   SOA的全称是Service-Oriented Architecture,面向服务架构.是一种架构,不是一种具体的开发技术.   要真正理解什么是SOA需要从软件开发的技术发展史 ...

  4. [Webpack 2] Validate your Webpack config with webpack-validator

    It’s quite common to make a mistake while developing your webpack configuration. A simple typo can c ...

  5. 统计中的PV,UV是的意思(转)

    PV(访问量):即Page View, 即页面浏览量或点击量,用户每次刷新即被计算一次. UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客.00:00-24:00 ...

  6. Apache Kafka: Next Generation Distributed Messaging System---reference

    Introduction Apache Kafka is a distributed publish-subscribe messaging system. It was originally dev ...

  7. 深度剖析:CDN内容分发网络技术原理--转载

    1.前言 Internet的高速发展,给人们的工作和生活带来了极大的便利,对Internet的服务品质和访问速度要求越来越高,虽然带宽不断增加,用户数量也在不断增加,受Web服务器的负荷和传输距离等因 ...

  8. 【Android】数据存储-java IO流文件存储

    1.数据持久化:将在内存中的瞬时数据保存在存储设备中.瞬时数据:设备关机数据丢失.持久化技术提供一种机制可以让数据在瞬时状态和持久状态之间转换. 2.Android中简单的三种存储方式:文件存储.Sh ...

  9. datatables常见报错

    Uncaught TypeError: Cannot read property 'style' of undefined 分析:列表配置 columnDefs 列数不匹配 来自为知笔记(Wiz)

  10. [XML] C#ResourceManagerWrapper帮助类 (转载)

    点击下载 ResourceManagerWrapper.rar /// <summary> /// 类说明:ResourceManagerWrapper /// 编 码 人:苏飞 /// ...