1. 导入各种模块

基本形式为:

import 模块名

from 某个文件 import 某个模块

2. 导入数据(以两类分类问题为例,即numClass = 2)

训练集数据data

可以看到,data是一个四维的ndarray

训练集的标签

3. 将导入的数据转化我keras可以接受的数据格式

keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数

label = np_utils.to_categorical(label, numClass

此时的label变为了如下形式

(注:PyCharm无法显示那么多的数据,所以下面才只显示了1000个数据,实际上该例子所示的数据集有1223个数据)

  

4. 建立CNN模型

以下图所示的CNN网络为例

#生成一个model
model = Sequential() #layer1-conv1
model.add(Convolution2D(16, 3, 3, border_mode='valid',input_shape=data.shape[-3:]))
model.add(Activation('tanh'))#tanh # layer2-conv2
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh # layer3-conv3
model.add(Convolution2D(32, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))#tanh # layer4
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))#tanh # layer5-fully connect
model.add(Dense(numClass, init='normal'))
model.add(Activation('softmax'))
#  
sgd = SGD(l2=0.1,lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")

5. 开始训练model

利用model.train_on_batch或者model.fit

  

Keras如何构造简单的CNN网络的更多相关文章

  1. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  2. 数据挖掘入门系列教程(十一点五)之CNN网络介绍

    在前面的两篇博客中,我们介绍了DNN(深度神经网络)并使用keras实现了一个简单的DNN.在这篇博客中将介绍CNN(卷积神经网络),然后在下一篇博客中将使用keras构建一个简单的CNN,对cifa ...

  3. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet

    上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...

  4. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  5. TensorflowTutorial_一维数据构造简单CNN

    使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网 ...

  6. tensorflow实现一个神经网络简单CNN网络

    本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测. 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist = input_da ...

  7. 6.keras-基于CNN网络的Mnist数据集分类

    keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...

  8. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg

    上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得 ...

  9. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

随机推荐

  1. 手动安装 mysqldb 与[ pip easy_install]

    mysqldb下载: http://sourceforge.net/projects/mysql-python/ https://sourceforge.net/projects/mysql-pyth ...

  2. GDB反向调试 + 指令记录+函数历史记录

    http://blog.chinaunix.net/uid-26941022-id-3199961.html b.c void fun(int a, int b){ int c; c=a+b; } v ...

  3. 深度剖析:CDN内容分发网络技术原理--转载

    1.前言 Internet的高速发展,给人们的工作和生活带来了极大的便利,对Internet的服务品质和访问速度要求越来越高,虽然带宽不断增加,用户数量也在不断增加,受Web服务器的负荷和传输距离等因 ...

  4. iOS AFNetWorking源码详解(一)

    来源:Yuzeyang 链接:http://zeeyang.com/2016/02/21/AFNetWorking-one/ 首先来介绍下AFNetWorking,官方介绍如下: AFNetworki ...

  5. asp.net中ScriptManager自带Ajax与jQuery事件冲突

    问题引诉:最近在使用asp.net自带的无刷新提交ScriptManager时,发现一个问题,就是和我自己用jQuery写的一些事件函数和局部刷新相冲突.通过在网上收索,发现很多人都遇到这个同样的问题 ...

  6. majikan

  7. NoteExpress格式化复制指定输出样式

    在NoteExpress中没有看到为命令“选中的题录右击 => 复制题录 => 格式化复制”指定输出样式的明确配置项,但格式化复制的输出样式也是可以变化了,随细节大面板里的“预览”标签页里 ...

  8. javascript异步加载详解(转)

    本文总结一下浏览器在 javascript 的加载方式. 关键词:异步加载(async loading),延迟加载(lazy loading),延迟执行(lazy execution),async 属 ...

  9. MySQL数字类型中的三种常用种类

    数字类型 MySQL数字类型按照我的分类方法分为三类:整数类.小数类和数字类. MySQL数字类型之一我所谓的“数字类” 就是指 DECIMAL 和 NUMERIC,它们是同一种类型.它严格的说不是一 ...

  10. J2EE入门必备

    1,J2EE是什么 J2EE(Java 2 platform Enterprise Edition)是软件平台,适于创建服务器端的大型应用软件和服务系统. J2EE适合开发大规模的业务系统,这种级别的 ...