【POJ1811】【miller_rabin + pollard rho + 快速乘】Prime Test
Description
Input
Output
Sample Input
2
5
10
Sample Output
Prime
2
Source
/*
宋代谢逸
《踏莎行·柳絮风轻》
柳絮风轻,梨花雨细。春阴院落帘垂地。碧溪影里小桥横,青帘市上孤烟起。
镜约关情,琴心破睡。轻寒漠漠侵鸳被。酒醒霞散脸边红,梦回山蹙眉间翠。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const int MAXN = + ;
using namespace std;
typedef long long ll;
ll n, Ans; //快速乘
long long multi(long long a, long long b, long long c){
if (b == ) return ;
if (b == ) return a % c;
long long tmp = multi(a, b / , c);
if (b % == ) return (tmp + tmp) % c;
else return (((tmp + tmp) % c) + a) % c;
}
ll pow(ll a, ll b, ll p){
if (b == ) return a % p;
ll tmp = pow(a, b / , p);
if (b % == ) return (multi(tmp, tmp, p));
else return multi(multi(tmp, tmp, p), (a % p), p);
}
//二次探测
bool Sec_Check(ll a, ll p, ll c){
ll tmp = pow(a, p, c);
if (tmp != && tmp != (c - )) return ;//不通过
if (tmp == (c - ) || (p % != )) return ;
return Sec_Check(a, p / , c);
}
bool miller_rabin(ll n){
ll cnt = ;
while (cnt--){
ll a = (rand()%(n - )) + ;
if (!Sec_Check(a, n - , n)) return ;
}
return ;
}
//int f(int ) {return }
long long gcd(long long a, long long b){return b == ? a : gcd(b, a % b);}
long long BIGRAND() {return rand() * RAND_MAX + rand();}
long long pollard_rho(long long n, long long c){
long long x, y, d;
long long i = , k = ;
x = ((double)rand()/RAND_MAX*(n - )+0.5) + ;
y = x;
while(){
i++;
//注意顺序
x = (multi(x, x, n) % n + c) % n;
d = gcd(y - x + n, n);
if( < d && d < n) return d;
if(y == x) return n;
if(i == k){
y = x;
k <<= ;
}
}
}
//
void find(long long n, long long c){
if (n == ) return;
if (miller_rabin(n)) {
if (Ans == -) Ans = n;
else Ans = min(Ans, n);
return ;
}
long long p = n;
while (p >= n) p = pollard_rho(n, c--);
find(p, c);
find(n / p, c);
//return find(p, c) + find(n / p, c);
} int main(){
int T;
srand(time()); scanf("%d", &T);
while (T--){
scanf("%lld", &n);
if (n != && miller_rabin(n)) printf("Prime\n");
else {
Ans = -;
find(n, );
printf("%lld\n", Ans);
}
}
return ;
}
【POJ1811】【miller_rabin + pollard rho + 快速乘】Prime Test的更多相关文章
- 整数(质因子)分解(Pollard rho大整数分解)
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- 浅谈 Miller-Robbin 与 Pollard Rho
前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法, ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
随机推荐
- poj 1556 The Doors(线段相交,最短路)
The Doors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7430 Accepted: 2915 Descr ...
- 白帽子讲Web安全1.pdf
第一章 我的安全世界观 安全是一个持续过程 6种威胁:Spoofing(伪装).Tampering(篡改).Repudiation(抵赖).InformationDisclosure(信息泄漏).De ...
- ubuntu 交换ctrl与caps lock 键
The relevant option is no longer available in the settings menu in Ubuntu 13.10; this has been repor ...
- 常用js效果:选项卡切换
js选项卡,很多网站都会用到,我这里用jquery给整了一个简单但是却很实用的js选项卡,废话不多说,直接上代码: <style> .txtadsblk01{ width:200px;} ...
- memcpy和strlen函数的实现
#include <stdio.h> #include <stdlib.h> //malloc()函数 typedef unsigned int size_t; size_t ...
- canvas绘制简单小铅笔
对应HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <ti ...
- WEB DYNPRO SAP HELP
http://help.sap.com/saphelp_nw70ehp1/helpdata/EN/43/70d83e8cb23d67e10000000a114084/content.htm
- 【剑指Offer学习】【面试题14 :调整数组顺序使奇数位于偶数前面】
题目:输入一个整数数组,实现一个函数来调整该数组中数字的顺序.使得全部奇数位于数组的前半部分.全部偶数位予数组的后半部分. 这个题目要求把奇数放在数组的前半部分, 偶数放在数组的后半部分,因此全部的奇 ...
- Cocos2d-x 3.1.1 学习日志9--一“上一下其乐无穷”游戏开发系列一
下载地址:http://app.mi.com/search?keywords=%E4%B8%80%E4%B8%8A%E4%B8%80%E4%B8%8B%E5%85%B6%E4%B9%90%E6%97% ...
- SQL Server存储内幕系列
http://blog.itpub.net/355374/list/1/?cid=75087