Linux内核中常见内存分配函数【转】
转自:http://blog.csdn.net/wzhwho/article/details/4996510
1. 原理说明
Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表,如图2-1所示。四级页表分别为:
l 页全局目录(Page Global Directory)
l 页上级目录(Page Upper Directory)
l 页中间目录(Page Middle Directory)
l 页表(Page Table)
页全局目录包含若干页上级目录的地址,页上级目录又依次包含若干页中间目录的地址,而页中间目录又包含若干页表的地址,每一个页表项指向一个页框。Linux中采用4KB大小的页框作为标准的内存分配单元。
多级分页目录结构
1.1. 伙伴系统算法
在实际应用中,经常需要分配一组连续的页框,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。
为了避免出现这种情况,Linux内核中引入了伙伴系统算法(buddy system)。把所有的空闲页框分组为11个块链表,每个块链表分别包含大小为1,2,4,8,16,32,64,128,256,512和1024个连续页框的页框块。最大可以申请1024个连续页框,对应4MB大小的连续内存。每个页框块的第一个页框的物理地址是该块大小的整数倍。
假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。
页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。
1.2. slab分配器
slab分配器源于 Solaris 2.4 的分配算法,工作于物理内存页框分配器之上,管理特定大小对象的缓存,进行快速而高效的内存分配。
slab分配器为每种使用的内核对象建立单独的缓冲区。Linux 内核已经采用了伙伴系统管理物理内存页框,因此 slab分配器直接工作于伙伴系统之上。每种缓冲区由多个 slab 组成,每个 slab就是一组连续的物理内存页框,被划分成了固定数目的对象。根据对象大小的不同,缺省情况下一个 slab 最多可以由 1024个页框构成。出于对齐等其它方面的要求,slab 中分配给对象的内存可能大于用户要求的对象实际大小,这会造成一定的内存浪费。
2. 常用内存分配函数
2.1. __get_free_pages
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
__get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址。__get_free_pages在实现上只是封装了alloc_pages函数,从代码分析,alloc_pages函数会分配长度为1<<order的连续页框块。order参数的最大值由include/linux/Mmzone.h文件中的MAX_ORDER宏决定,在默认的2.6.18内核版本中,该宏定义为10。也就是说在理论上__get_free_pages函数一次最多能申请1<<10 * 4KB也就是4MB的连续物理内存。但是在实际应用中,很可能因为不存在这么大量的连续空闲页框而导致分配失败。在测试中,order为10时分配成功,order为11则返回错误。
2.2. kmem_cache_alloc
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags,
void (*ctor)(void*, struct kmem_cache *, unsigned long),
void (*dtor)(void*, struct kmem_cache *, unsigned long))
void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从该高速缓存区域中获取新的内存块。 kmem_cache_alloc一次能分配的最大内存由mm/slab.c文件中的MAX_OBJ_ORDER宏定义,在默认的2.6.18内核版本中,该宏定义为5,于是一次最多能申请1<<5 * 4KB也就是128KB的连续物理内存。分析内核源码发现,kmem_cache_create函数的size参数大于128KB时会调用BUG()。测试结果验证了分析结果,用kmem_cache_create分配超过128KB的内存时使内核崩溃。
2.3. kmalloc
void *kmalloc(size_t size, gfp_t flags)
kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。kmalloc一次最多能申请的内存大小由include/linux/Kmalloc_size.h的内容来决定,在默认的2.6.18内核版本中,kmalloc一次最多能申请大小为131702B也就是128KB字节的连续物理内存。测试结果表明,如果试图用kmalloc函数分配大于128KB的内存,编译不能通过。
2.4. vmalloc
void *vmalloc(unsigned long size)
前面几种内存分配方式都是物理连续的,能保证较低的平均访问时间。但是在某些场合中,对内存区的请求不是很频繁,较高的内存访问时间也可以接受,这是就可以分配一段线性连续,物理不连续的地址,带来的好处是一次可以分配较大块的内存。图3-1表示的是vmalloc分配的内存使用的地址范围。vmalloc对一次能分配的内存大小没有明确限制。出于性能考虑,应谨慎使用vmalloc函数。在测试过程中,最大能一次分配1GB的空间。
Linux内核部分内存分布
2.5. dma_alloc_coherent
void *dma_alloc_coherent(struct device *dev, size_t size,
ma_addr_t *dma_handle, gfp_t gfp)
DMA是一种硬件机制,允许外围设备和主存之间直接传输IO数据,而不需要CPU的参与,使用DMA机制能大幅提高与设备通信的吞吐量。DMA操作中,涉及到CPU高速缓存和对应的内存数据一致性的问题,必须保证两者的数据一致,在x86_64体系结构中,硬件已经很好的解决了这个问题, dma_alloc_coherent和__get_free_pages函数实现差别不大,前者实际是调用__alloc_pages函数来分配内存,因此一次分配内存的大小限制和后者一样。__get_free_pages分配的内存同样可以用于DMA操作。测试结果证明,dma_alloc_coherent函数一次能分配的最大内存也为4M。
2.6. ioremap
void * ioremap (unsigned long offset, unsigned long size)
ioremap是一种更直接的内存“分配”方式,使用时直接指定物理起始地址和需要分配内存的大小,然后将该段物理地址映射到内核地址空间。ioremap用到的物理地址空间都是事先确定的,和上面的几种内存分配方式并不太一样,并不是分配一段新的物理内存。ioremap多用于设备驱动,可以让CPU直接访问外部设备的IO空间。ioremap能映射的内存由原有的物理内存空间决定,所以没有进行测试。
2.7. Boot Memory
如果要分配大量的连续物理内存,上述的分配函数都不能满足,就只能用比较特殊的方式,在Linux内核引导阶段来预留部分内存。
2.7.1. 在内核引导时分配内存
void* alloc_bootmem(unsigned long size)
可以在Linux内核引导过程中绕过伙伴系统来分配大块内存。使用方法是在Linux内核引导时,调用mem_init函数之前用alloc_bootmem函数申请指定大小的内存。如果需要在其他地方调用这块内存,可以将alloc_bootmem返回的内存首地址通过EXPORT_SYMBOL导出,然后就可以使用这块内存了。这种内存分配方式的缺点是,申请内存的代码必须在链接到内核中的代码里才能使用,因此必须重新编译内核,而且内存管理系统看不到这部分内存,需要用户自行管理。测试结果表明,重新编译内核后重启,能够访问引导时分配的内存块。
2.7.2. 通过内核引导参数预留顶部内存
在Linux内核引导时,传入参数“mem=size”保留顶部的内存区间。比如系统有256MB内存,参数“mem=248M”会预留顶部的8MB内存,进入系统后可以调用ioremap(0xF800000,0x800000)来申请这段内存。
3. 几种分配函数的比较
|
分配原理 |
最大内存 |
其他 |
|
|
__get_free_pages |
直接对页框进行操作 |
4MB |
适用于分配较大量的连续物理内存 |
|
kmem_cache_alloc |
基于slab机制实现 |
128KB |
适合需要频繁申请释放相同大小内存块时使用 |
|
kmalloc |
基于kmem_cache_alloc实现 |
128KB |
最常见的分配方式,需要小于页框大小的内存时可以使用 |
|
vmalloc |
建立非连续物理内存到虚拟地址的映射 |
物理不连续,适合需要大内存,但是对地址连续性没有要求的场合 |
|
|
dma_alloc_coherent |
基于__alloc_pages实现 |
4MB |
适用于DMA操作 |
|
ioremap |
实现已知物理地址到虚拟地址的映射 |
适用于物理地址已知的场合,如设备驱动 |
|
|
alloc_bootmem |
在启动kernel时,预留一段内存,内核看不见 |
小于物理内存大小,内存管理要求较高 |
注:表中提到的最大内存数据来自CentOS5.3 x86_64系统,其他系统和体系结构会有不同
Linux内核中常见内存分配函数【转】的更多相关文章
- Linux内核中常见内存分配函数
1. 原理说明 Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表,如图2-1所示.四级页表分 ...
- Linux内核中常见内存分配函数(二)
常用内存分配函数 __get_free_pages unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) __get_f ...
- Linux内核中常见内存分配函数(一)
linux内核中采 用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系 统中,用到了四级页表. * 页全局目录(Page Global Dir ...
- Linux内核中常见内存分配函数(三)
ioremap void * ioremap (unsigned long offset, unsigned long size) ioremap是一种更直接的内存“分配”方式,使用时直接指定物理起始 ...
- 初探Linux内核中的内存管理
Linux内核设计与实现之内存管理的读书笔记 初探Linux内核管理 内核本身不像用户空间那样奢侈的使用内存; 内核不支持简单快捷的内存分配机制, 用户空间支持? 这种简单快捷的内存分配机制是什么呢? ...
- KSM剖析——Linux 内核中的内存去耦合
简介: 作为一个系统管理程序(hypervisor),Linux® 有几个创新,2.6.32 内核中一个有趣的变化是 KSM(Kernel Samepage Merging) 允许这个系统管理程序通 ...
- linux内核中send与recv函数详解
Linux send与recv函数详解 1.简介 #include <sys/socket.h> ssize_t recv(int sockfd, void *buff, size_t n ...
- Linux内核中关于内存的数据结构
物理页面 /* * Try to keep the most commonly accessed fields in single cache lines * here (16 bytes or gr ...
- Linux内核中kzalloc函数详解
**************************************************************************************************** ...
随机推荐
- rt-thread learning notes
rt-thread learning notes 2018-01-15 > 001 具有相同优先级的线程,每个线程的时间片大小都可以在初始化或创建该线程时指定 rt_thread_t rt_th ...
- luogu1972 HH的项链(树状数组)
无修改.询问区间种类数的问题可以很容易地用树状数组解决 我们先给询问按右端点排序,然后推着做,每次让a[i]++,表示i处新增了一个种类 但是这样会和前面的有重复,我们只要记下每个种类上次在哪里出现过 ...
- tjoi2018D2T2(luogu4590) 游园会 (状压dp)
题解劝退系列 设长的那个串是A,短的那个串是B. 那我们在如果已经知道某个A的时候,A[1..i]和B[1..j]的最长公共子序列$f[i][j]=max\{f[i-1][j],f[i][j-1],f ...
- tesseract-ocr 识别中文扫描图片
原文链接:http://www.cnblogs.com/alex-blog/articles/2714984.html 项目主页地址:http://code.google.com/p/tesser ...
- A1054. The Dominant Color
Behind the scenes in the computer's memory, color is always talked about as a series of 24 bits of i ...
- 【洛谷P1854】花店橱窗 线性dp+路径输出
题目大意:给定 N 个数字,编号分别从 1 - N,M 个位置,N 个数字按照相对大小顺序放在 M 个位置里,每个数放在每个位置上有一个对答案的贡献值,求一种摆放方式使得贡献值最大. 题解:一道典型的 ...
- asp.net 结合本地jQuery使在提交时显示错误提示
最近在做一个项目,做的表单有的比较长,如果直接点提交,错误提示有时可能用户看不见,对用户体验不好.还有客户端提交有点慢,担心用户重复提交,于是做了个检测用户提交表单验证是否有错误,没错误就提交,且把按 ...
- 解决Win8.1 IE11兼容性问题的方法
装了64位win8.1企业版,IE11出现了一些兼容性问题,如个别网银网页兼容问题,还有office.迅雷.adobe reader.旋风等等插件不兼容不能加载的问题. 折腾了一天总算全部解决了,主要 ...
- Python中if-else的多种写法
a, b= 1, 2 将a和b两个变量中的最大值赋值给c (1)常规写法 if a>b: c = a else: c = b (2)表达式 c = a if a>b e ...
- Spark进阶之路-Spark HA配置
Spark进阶之路-Spark HA配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 集群部署完了,但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借 ...