T1 谈笑风生

【题目描述】

【输入】

【输出】

一行两个数,所需能量P与在能量最小的前提下最短的到达时间t。

【样例输入】

5 7 66
4 3 2 1 5
1 2
1 5
2 3
2 4
2 5
3 4
3 5

【样例输出】

6 64

【数据范围限制】

【样例解释】

从城市1出发,花费6单位能量,依次经过2、4、3、到达首都5,花费32+3+0+29=64秒

Solution

边权计算规则
\[
w=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)[(i,j)=1]
\]

\[
\begin{aligned}
&设sum(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}(i+j)\\
w&=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)[(i,j)=1]\\
&=\sum_{i=1}^{num[u]}\sum_{j=1}^{num[v]}(i+j)\sum_{k|(i,j)}\mu(k)\\
&=\sum_{k=1}^{min(num[u],num[v])}k\mu(k) \sum_{i=1}^{\lfloor\frac{num[u]}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{num[v]}{k}\rfloor}(i+j)\\
&=\sum_{k=1}^{min(num[u],num[v])}k*\mu(k)*sum(\lfloor\frac{num[u]}{k}\rfloor,\lfloor\frac{num[v]}{k}\rfloor)
\end{aligned}
\]

易得
\[
\begin{aligned}
sum(n,m)&=\sum_{i=1}^{n}\sum_{j=1}^{m}(i+j)\\
&=\frac{nm(n+m+2)}{2}
\end{aligned}
\]
所以可以\(m\sqrt{max(num[i])}\)的计算出每条边的边权

然后二分答案+spfa计算即可。

因为JZOJ不开放注册。。。所以就没办法交了,口胡一波,题面还是网上找来的。。。

不过思路是对的。好像GDOI2018我也就两道T1会写T_T

GDOI2018D2T1 谈笑风生的更多相关文章

  1. 【BZOJ-3653】谈笑风生 DFS序 + 可持久化线段树

    3653: 谈笑风生 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 628  Solved: 245[Submit][Status][Discuss] ...

  2. BZOJ3653: 谈笑风生

    Description 设T 为一棵有根树,我们做如下的定义:• 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道高明到哪里去了”.• 设a 和 b 为 T 中的两个不同节点.如 ...

  3. 老码农教你在 StackOverflow 上谈笑风生

    作为一个高大上的码农,你肯定用到过 StackOverflow,必须的.会有人否定这个断言么?那他恐怕不是真正的码农,或者说还没入门.StackOverflow 对于码农的重要性,基本就和诸葛亮对刘备 ...

  4. 数据结构(主席树):COGS 2211. 谈笑风生

    2211. 谈笑风生 ★★★★   输入文件:laugh.in   输出文件:laugh.out   简单对比时间限制:3 s   内存限制:512 MB [问题描述] 设T 为一棵有根树,我们做如下 ...

  5. 【NOI模拟】谈笑风生(主席树)

    题目描述 设 T 为一棵有根树,我们做如下的定义: 设 a 和 b 为 T 中的两个不同节点.如果 a 是 b 的祖先,那么称 “ a 比 b 不知道高明到哪里去了 ” . 设 a 和 b 为 T 中 ...

  6. bzoj 3653 [湖南集训]谈笑风生

    题目描述 设 T 为一棵有根树,我们做如下的定义: • 设 a 和 b 为 T 中的两个不同节点.如果 a 是 b 的祖先,那么称"a 比 b 不知道高明到哪里去了". • 设 a ...

  7. BZOJ_3653_谈笑风生_树状数组

    BZOJ_3653_谈笑风生_树状数组 Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道 高明到哪里去了”. ...

  8. 【BZOJ3653】谈笑风生(长链剖分)

    [BZOJ3653]谈笑风生(长链剖分) 题面 BZOJ 洛谷 权限题啊.... 题解 首先根据题目给的条件,发现\(a,b\)都要是\(c\)的父亲. 所以这三个点是树上的一条深度单增的链. 因为\ ...

  9. luogu P3899 [湖南集训]谈笑风生

    传送门 nmyzd,mgdhls,bnmbzdgdnlql,a,wgttxfs 对于一个点\(a\),点\(b\)只有可能是他的祖先或者在\(a\)子树里 如果点\(b\)是\(a\)祖先,那么答案为 ...

随机推荐

  1. c++ string split

    #include <iterator> #include <regex> std::vector<std::string> s_split(const std::s ...

  2. C# vs2015单元测试测试资源管理器不显示测试方法

    问题描述:在用VS2015用测试框架NUnit单元测试的时候,测试资源管理器死活不出现测试方法,无法运行单元测试模块 现象如下图: 原因:nunit版本不对应 解决方案:下载nunit3.0及往上的版 ...

  3. SQl server更新某阶段的匹配关系。

    DECLARE @count INTEGERDECLARE @id INTEGERDECLARE @subjectID INTEGERSET @count=1SET @id =11894SET @su ...

  4. c++学习笔记(二)-指针

    1. 指向数组的指针 int balance[5] = { 1000, 2, 3, 17, 50 }; int *ptr; ptr = balance; //ptr是指向数组balance的指针 // ...

  5. 设计模式之Template(模板)(转)

    Template定义: 定义一个操作中算法的骨架,将一些步骤的执行延迟到其子类中. 其实Java的抽象类本来就是Template模式,因此使用很普遍.而且很容易理解和使用,我们直接以示例开始: pub ...

  6. 设计模式之Command(命令)(转)

    Command模式是最让我疑惑的一个模式,我在阅读了很多代码后,才感觉隐约掌握其大概原理,我认为理解设计模式最主要是掌握起原理构造,这样才对自己实际编程有指导作用.Command模式实际上不是个很具体 ...

  7. php获得可靠的精准的当前时间 ( 通过授时服务器 )

    有一种情形是这样子的,比如机票业务中的订票流程,我们需要一个非常可靠的当前时间来支持,尽管大多数服务器的时间是非常准确的,我们使用time()来获取的时间是可靠的,但未免会有不确切的情况,也有的服务器 ...

  8. git 提交命令

    git stash -u 占存本地版本 git commit git fetch 提交 git rebase git stash pop 将本地没有提交的代码暂存,然后切换到其他分支,然后再回到当前分 ...

  9. Robot Framework 自动化测试--部署篇

    一.产品介绍 Robot Framework是一个基于Python的,可扩展的关键字驱动的测试自动化框架.它是为了端 到端的验收测试(End-To-End Acceptance Test)以及验收测试 ...

  10. Nodejs的npm安装模块时候报错:npm ERR! Error: CERT_UNTRUSTED的解决方法

    npm http GET https://registry.npmjs.org/grunt-cli npm http GET https://registry.npmjs.org/grunt-cli ...