POJ 2243 Knight Moves

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy. 
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.

InputThe input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard. 
OutputFor each test case, print one line saying "To get from xx to yy takes n knight moves.". 
Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

分析:简单的BFS求最短路,需要注意的是国际象棋中骑士和中国象棋中的马一样走日字

代码:

#include<iostream>
#include<queue>
#include<cstdio>
using namespace std;
const int N = ;
typedef struct {
int x;
int y;
} P;
int dx[] = {-, , -, , -, , -, };
int dy[] = {-, -, -, -, , , , };
int vis[N][N];
int d[N][N];
char s[];
char e[];
int sx, sy, ex, ey;
int check(int x, int y) {
return x >= && x < && y >= && y < ;
}
void bfs() {
queue<P> que;
P p;
p.x = sx;
p.y = sy;
que.push(p);
vis[sx][sy] = ;
while(que.size()) {
P p = que.front();
que.pop();
int x = p.x;
int y = p.y;
if(x == ex && y == ey) {
printf("To get from %s to %s takes %d knight moves.\n", s, e, d[x][y]);
break;
}
for(int i = ; i < ; i++) {
int nx = x + dx[i], ny = y + dy[i];
if(check(nx, ny) && !vis[nx][ny]) {
vis[nx][ny] = ;
d[nx][ny] = d[x][y] + ;
P p;
p.x = nx;
p.y = ny;
que.push(p);
}
}
}
}
int main() {
while(cin >> s >> e) {
for(int i = ; i < N; i++) {
for(int j = ; j < N; j++) d[i][j] = vis[i][j] = ;
}
sx = s[] - '' - ;
sy = s[] - 'a';
ex = e[] - '' - ;
ey = e[] - 'a';
bfs();
}
return ;
}

POJ 2243 Knight Moves(BFS)的更多相关文章

  1. POJ 2243 Knight Moves

    Knight Moves Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13222   Accepted: 7418 Des ...

  2. POJ 1915 Knight Moves(BFS+STL)

     Knight Moves Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20913   Accepted: 9702 ...

  3. POJ 1915 Knight Moves

    POJ 1915 Knight Moves Knight Moves   Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 29 ...

  4. OpenJudge/Poj 1915 Knight Moves

    1.链接地址: http://bailian.openjudge.cn/practice/1915 http://poj.org/problem?id=1915 2.题目: 总Time Limit: ...

  5. (step4.2.1) hdu 1372(Knight Moves——BFS)

    解题思路:BFS 1)马的跳跃方向 在国际象棋的棋盘上,一匹马共有8个可能的跳跃方向,如图1所示,按顺时针分别记为1~8,设置一组坐标增量来描述这8个方向: 2)基本过程 设当前点(i,j),方向k, ...

  6. UVA 439 Knight Moves(BFS)

    Knight Moves option=com_onlinejudge&Itemid=8&category=11&page=show_problem&problem=3 ...

  7. HDU 1372 Knight Moves(BFS)

    题目链接 Problem Description A friend of you is doing research on the Traveling Knight Problem (TKP) whe ...

  8. HDU1372:Knight Moves(BFS)

    Knight Moves Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total ...

  9. hdu1372 Knight Moves BFS 搜索

    简单BFS题目 主要是读懂题意 和中国的象棋中马的走法一样,走日字型,共八个方向 我最初wa在初始化上了....以后多注意... 代码: #include <iostream> #incl ...

随机推荐

  1. rtrim

    <?php $str = '14岁'; $new_str = rtrim($str, '岁'); echo $new_str; 如果右边是'岁',就过滤掉.

  2. module.exports小程序模块化,require

    小程序模块化 可以将一些公共的代码抽离成为一个单独的 js 文件,作为一个模块.模块只有通过 module.exports 或者 exports 才能对外暴露接口. tips:exports 是 mo ...

  3. javaSE习题 第一章 JAVA语言概述

    转眼就开学了,正式在学校学习SE部分,由于暑假放视频过了一遍,略感觉轻松,今天开始,博客将会记录我的课本习题,主要以文字和代码的形式展现,一是把SE基础加强一下,二是课本中有很多知识是视频中没有的,做 ...

  4. windows版 Java调用人脸识别离线sdk

    最近因工作需求在java-web服务中调用人脸识别离线sdk,主要通过JNA及JNI技术,但均未调试通过,JNA调用时出现以下异常,一直未解决,求大佬指点,导常信息如下: in BaiduFaceAp ...

  5. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  6. FreeBDS之ipf防火墙

    FreeBSD使用手册https://www.freebsd.org/doc/zh_CN/books/handbook/index.html https://www.freebsd.org/doc/z ...

  7. WinForm下窗体权限设计

    权限设计   笔者不才看了园子里面很多园友写关于权限设计这块内容,那么笔者也在添一笔.这个是笔者在上完软件工程课程后,上交的一篇笔者论文,这里分享给大家交流,当然笔者经验尚浅,若内容有误,请大家指点出 ...

  8. scrapy-redis(一)

    安装scrapy-redis pip install scrapy-redis 从GitHub 上拷贝源码: clone github scrapy-redis源码文件 git clone https ...

  9. linux 下如何安装memcached 和启动服务

    一.安装gcc # yum -y install gcc 二.安装libevent # wget http://www.monkey.org/~provos/libevent-2.0.12-stabl ...

  10. apiCloud 双击事件

    apiCloud 双击事件只能使用纯js去写 var app = new Vue({ el: "#app", data: function() { return { token: ...