Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三十):使用flatMapGroupsWithState替换agg
flatMapGroupsWithState的出现解决了什么问题:
flatMapGroupsWithState的出现在spark structured streaming原因(从spark.2.2.0开始才开始支持):
1)可以实现agg函数;
2)就目前最新spark2.3.2版本来说在spark structured streming中依然不支持对dataset多次agg操作
,而flatMapGroupsWithState可以替代agg的作用,同时它允许在sink为append模式下在agg之前使用。
注意:尽管允许agg之前使用,但前提是:输出(sink)方式Append方式。

flatMapGroupsWithState的使用示例(从网上找到):
参考:《https://jaceklaskowski.gitbooks.io/spark-structured-streaming/spark-sql-streaming-KeyValueGroupedDataset-flatMapGroupsWithState.html》
说明:以下示例代码实现了“select deviceId,count(0) as count from tbName group by deviceId.”。
1)spark2.3.0版本下定义一个Signal实体类:
scala> spark.version
res0: String = 2.3.0-SNAPSHOT import java.sql.Timestamp
type DeviceId = Int
case class Signal(timestamp: java.sql.Timestamp, value: Long, deviceId: DeviceId)
2)使用Rate source方式生成一些测试数据(随机实时流方式),并查看执行计划:
// input stream
import org.apache.spark.sql.functions._
val signals = spark.
readStream.
format("rate").
option("rowsPerSecond", 1).
load.
withColumn("value", $"value" % 10). // <-- randomize the values (just for fun)
withColumn("deviceId", rint(rand() * 10) cast "int"). // <-- 10 devices randomly assigned to values
as[Signal] // <-- convert to our type (from "unpleasant" Row)
scala> signals.explain
== Physical Plan ==
*Project [timestamp#0, (value#1L % 10) AS value#5L, cast(ROUND((rand(4440296395341152993) * 10.0)) as int) AS deviceId#9]
+- StreamingRelation rate, [timestamp#0, value#1L]
3)对Rate source流对象进行groupBy,使用flatMapGroupsWithState实现agg
// stream processing using flatMapGroupsWithState operator
val device: Signal => DeviceId = { case Signal(_, _, deviceId) => deviceId }
val signalsByDevice = signals.groupByKey(device) import org.apache.spark.sql.streaming.GroupState
type Key = Int
type Count = Long
type State = Map[Key, Count]
case class EventsCounted(deviceId: DeviceId, count: Long)
def countValuesPerKey(deviceId: Int, signalsPerDevice: Iterator[Signal], state: GroupState[State]): Iterator[EventsCounted] = {
val values = signalsPerDevice.toList
println(s"Device: $deviceId")
println(s"Signals (${values.size}):")
values.zipWithIndex.foreach { case (v, idx) => println(s"$idx. $v") }
println(s"State: $state") // update the state with the count of elements for the key
val initialState: State = Map(deviceId -> 0)
val oldState = state.getOption.getOrElse(initialState)
// the name to highlight that the state is for the key only
val newValue = oldState(deviceId) + values.size
val newState = Map(deviceId -> newValue)
state.update(newState) // you must not return as it's already consumed
// that leads to a very subtle error where no elements are in an iterator
// iterators are one-pass data structures
Iterator(EventsCounted(deviceId, newValue))
}
import org.apache.spark.sql.streaming.{GroupStateTimeout, OutputMode} val signalCounter = signalsByDevice.flatMapGroupsWithState(
outputMode = OutputMode.Append,
timeoutConf = GroupStateTimeout.NoTimeout)(func = countValuesPerKey)
4)使用Console Sink方式打印agg结果:
import org.apache.spark.sql.streaming.{OutputMode, Trigger}
import scala.concurrent.duration._
val sq = signalCounter.
writeStream.
format("console").
option("truncate", false).
trigger(Trigger.ProcessingTime(10.seconds)).
outputMode(OutputMode.Append).
start
5)console print
...
-------------------------------------------
Batch:
-------------------------------------------
+--------+-----+
|deviceId|count|
+--------+-----+
+--------+-----+
...
// :: INFO StreamExecution: Streaming query made progress: {
"id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
"runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
"name" : null,
"timestamp" : "2017-08-21T06:57:26.719Z",
"batchId" : ,
"numInputRows" : ,
"processedRowsPerSecond" : 0.0,
"durationMs" : {
"addBatch" : ,
"getBatch" : ,
"getOffset" : ,
"queryPlanning" : ,
"triggerExecution" : ,
"walCommit" :
},
"stateOperators" : [ {
"numRowsTotal" : ,
"numRowsUpdated" : ,
"memoryUsedBytes" :
} ],
"sources" : [ {
"description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
"startOffset" : null,
"endOffset" : ,
"numInputRows" : ,
"processedRowsPerSecond" : 0.0
} ],
"sink" : {
"description" : "ConsoleSink[numRows=20, truncate=false]"
}
}
// :: DEBUG StreamExecution: batch committed
...
-------------------------------------------
Batch:
-------------------------------------------
Device:
Signals ():
. Signal(-- ::27.682,,)
State: GroupState(<undefined>)
Device:
Signals ():
. Signal(-- ::26.682,,)
State: GroupState(<undefined>)
Device:
Signals ():
. Signal(-- ::28.682,,)
State: GroupState(<undefined>)
+--------+-----+
|deviceId|count|
+--------+-----+
| | |
| | |
| | |
+--------+-----+
...
// :: INFO StreamExecution: Streaming query made progress: {
"id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
"runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
"name" : null,
"timestamp" : "2017-08-21T06:57:30.004Z",
"batchId" : ,
"numInputRows" : ,
"inputRowsPerSecond" : 0.91324200913242,
"processedRowsPerSecond" : 2.2388059701492535,
"durationMs" : {
"addBatch" : ,
"getBatch" : ,
"getOffset" : ,
"queryPlanning" : ,
"triggerExecution" : ,
"walCommit" :
},
"stateOperators" : [ {
"numRowsTotal" : ,
"numRowsUpdated" : ,
"memoryUsedBytes" :
} ],
"sources" : [ {
"description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
"startOffset" : ,
"endOffset" : ,
"numInputRows" : ,
"inputRowsPerSecond" : 0.91324200913242,
"processedRowsPerSecond" : 2.2388059701492535
} ],
"sink" : {
"description" : "ConsoleSink[numRows=20, truncate=false]"
}
}
// :: DEBUG StreamExecution: batch committed
...
-------------------------------------------
Batch:
-------------------------------------------
Device:
Signals ():
. Signal(-- ::36.682,,)
State: GroupState(<undefined>)
Device:
Signals ():
. Signal(-- ::32.682,,)
. Signal(-- ::35.682,,)
State: GroupState(Map( -> ))
Device:
Signals ():
. Signal(-- ::34.682,,)
State: GroupState(<undefined>)
Device:
Signals ():
. Signal(-- ::29.682,,)
State: GroupState(<undefined>)
Device:
Signals ():
. Signal(-- ::31.682,,)
. Signal(-- ::33.682,,)
State: GroupState(Map( -> ))
Device:
Signals ():
. Signal(-- ::30.682,,)
. Signal(-- ::37.682,,)
State: GroupState(Map( -> ))
Device:
Signals ():
. Signal(-- ::38.682,,)
State: GroupState(<undefined>)
+--------+-----+
|deviceId|count|
+--------+-----+
| | |
| | |
| | |
| | |
| | |
| | |
| | |
+--------+-----+
...
// :: INFO StreamExecution: Streaming query made progress: {
"id" : "a43822a6-500b-4f02-9133-53e9d39eedbf",
"runId" : "79cb037e-0f28-4faf-a03e-2572b4301afe",
"name" : null,
"timestamp" : "2017-08-21T06:57:40.005Z",
"batchId" : ,
"numInputRows" : ,
"inputRowsPerSecond" : 0.9999000099990002,
"processedRowsPerSecond" : 9.242144177449168,
"durationMs" : {
"addBatch" : ,
"getBatch" : ,
"getOffset" : ,
"queryPlanning" : ,
"triggerExecution" : ,
"walCommit" :
},
"stateOperators" : [ {
"numRowsTotal" : ,
"numRowsUpdated" : ,
"memoryUsedBytes" :
} ],
"sources" : [ {
"description" : "RateSource[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=8]",
"startOffset" : ,
"endOffset" : ,
"numInputRows" : ,
"inputRowsPerSecond" : 0.9999000099990002,
"processedRowsPerSecond" : 9.242144177449168
} ],
"sink" : {
"description" : "ConsoleSink[numRows=20, truncate=false]"
}
}
// :: DEBUG StreamExecution: batch committed // In the end...
sq.stop // Use stateOperators to access the stats
scala> println(sq.lastProgress.stateOperators().prettyJson)
{
"numRowsTotal" : ,
"numRowsUpdated" : ,
"memoryUsedBytes" :
}
Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三十):使用flatMapGroupsWithState替换agg的更多相关文章
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十二)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。
Centos7出现异常:Failed to start LSB: Bring up/down networking. 按照<Kafka:ZK+Kafka+Spark Streaming集群环境搭 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十九)ES6.2.2 安装Ik中文分词器
注: elasticsearch 版本6.2.2 1)集群模式,则每个节点都需要安装ik分词,安装插件完毕后需要重启服务,创建mapping前如果有机器未安装分词,则可能该索引可能为RED,需要删除后 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十五)Spark编写UDF、UDAF、Agg函数
Spark Sql提供了丰富的内置函数让开发者来使用,但实际开发业务场景可能很复杂,内置函数不能够满足业务需求,因此spark sql提供了可扩展的内置函数. UDF:是普通函数,输入一个或多个参数, ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十六)Structured Streaming中ForeachSink的用法
Structured Streaming默认支持的sink类型有File sink,Foreach sink,Console sink,Memory sink. ForeachWriter实现: 以写 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十四)定义一个avro schema使用comsumer发送avro字符流,producer接受avro字符流并解析
参考<在Kafka中使用Avro编码消息:Consumer篇>.<在Kafka中使用Avro编码消息:Producter篇> 在了解如何avro发送到kafka,再从kafka ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十八)ES6.2.2 增删改查基本操作
#文档元数据 一个文档不仅仅包含它的数据 ,也包含 元数据 —— 有关 文档的信息. 三个必须的元数据元素如下:## _index 文档在哪存放 ## _type 文档表示的对象类别 ## ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
随机推荐
- JQuery中的工具类(五)
一:1.serialize()序列表表格内容为字符串.返回值jQuery示例序列表表格内容为字符串,用于 Ajax 请求. HTML 代码:<p id="results"&g ...
- 【C++ Primer | 06】 函数
contexpr函数 const用于运行期常量,constexpr用于编译期常量 • [test1.cpp] #include <iostream> using namespace std ...
- 阿里巴巴的26款超神Java开源项目
目录 1.分布式应用服务开发的一站式解决方案 Spring Cloud Alibaba 2. JDBC 连接池.监控组件 Druid 3. Java 的 JSON 处理器 fastjson 4. 服务 ...
- [转] Java中public,private,final,static等概念的解读
作为刚入门Java的小白,对于public,private,final,static等概念总是搞不清楚,到底都代表着什么,这里做一个简单的梳理,和大家分享,若有错误请指正,谢谢~ 访问权限修饰符 pu ...
- Asp.Net Core 2.0 项目实战(1) NCMVC开源下载了
Asp.Net Core 2.0 项目实战(1) NCMVC开源下载了 Asp.Net Core 2.0 项目实战(2)NCMVC一个基于Net Core2.0搭建的角色权限管理开发框架 Asp.Ne ...
- Python hashlib、hmac加密模块
#用于加密的相关操作,3.x里代替了md5模块和sha模块,主要提供sha1,sha224,sha256,sha384,sha512,md5算法 #sha2为主流加密算法,md5加密方式不如sha2 ...
- gitbook editor教程
用户首先需要安装 nodejs,以便能够使用 npm 来安装 gitbook.所以我们先安装node.js,安装过程很简单,都是不断按下「Next」按钮就可以了 写node -h可以看看是否安装成功 ...
- 想要进步,就要阅读大神的博客,再推荐一波springmvc映射路径之url的action请求
http://www.cnblogs.com/liukemng/p/3726897.html
- vi命令修改文件及保存的使用方法
简单点:vi文件名,按"I"进入insert模式,可以正常文本编辑,编辑好之后按“esc”退出到“命令模式”,再按“shift+:”进入“底行模式”, 按“:wq”保存退出! 还一 ...
- QT学习之菜单栏与工具栏
QT学习之菜单栏与工具栏 目录 简单菜单栏 多级菜单栏 上下菜单栏 工具栏 简单菜单栏 程序示例 from PyQt5.QtWidgets import QApplication, QMainWind ...