题目如下:

RSA算法的使用一般要求每个不同的用户有一个独立的模数N。有天,Bob脑洞大开,认为似乎没有必要这样做。只需要一个模数N,然后给不同的用户分发不同的e和d就好了。可惜这种做法有严重的安全漏洞。

给定Alice的公钥(e1,N),Adv为了破解Alice的密文,他也注册一个公私钥对,得到(e2, d2, N),然后他就可以巧妙地计算出Alice的解密私钥。注意:Adv得到的私钥不一定与Alice的相同,只是它确实可以解密。

(e1 =

44379563805854841580307748547737435172564831877127303051909203409873174780389273150966396080375621148040275710628408649117613085199533826455458312376264659153842853015345496268736337902730232293424031775369541079662258443836020140399047886828048837071536578243295077689245549921524765222192270061081366989243

N =

188115669939527035644766943794256836704505079895306601119938518634078379404429524926183546093986493443422022468844644307633083886388295943602507953702360632321739073592477683222131866451975315695813478098524853358977564134499058448438525811837376172990710150323209055804682074564005014776547535959114226010493

(e2 =

112465763139808984065405993827008716763974555200543206549100182421914260511395374512318119557311872118857352370325610769529155517454000609905909538235321637165438962672069969201523246380106126889874030417878823876408727390390051948217715186480658609481138938023687641185709391304878382079926539531855678365763

d2 =

55881649455902117785162844948995531081646760354831350250450328774662614334096209227124014992837725793190883247171284132768863157972472923057215962250425474753160669444247876851199006665484502793278672692761545198268608005712388135980371518592854149756626148424994498979112285655516912703587302199972664162731

N =

188115669939527035644766943794256836704505079895306601119938518634078379404429524926183546093986493443422022468844644307633083886388295943602507953702360632321739073592477683222131866451975315695813478098524853358977564134499058448438525811837376172990710150323209055804682074564005014776547535959114226010493

)

求解(e1, N)加密得到的密文(没有编码,是一个整数):

166834578157098529809222592291594342260836191039081705782260506690911922650094691879568641873546447862853989518762075081785381252999566333779425586950217410876199240677942391128773211264433855236931134494842223272683014826519273429450763047329625425561073729238027952900168036140503255431512655421527963913597

请解释过程,给出明文及其解密用的私钥。

一开始想,给定的N相同,是不是共模攻击,看并不满足共模攻击的条件

后来看到一篇博客(http://jackyc.top/2018/10/27/RSA-3/#more),里面有个参考文档(https://www.di-mgt.com.au/rsa_factorize_n.html),看完后知道原来知道(e,d,N)可以分解N,但是原理还不是很理解

找到了一个PDF,里面有原理的讲解,不过里面有些小地方和我的理解有出入,要么我错了,要么PDF出现小错误,最后还是按自己的理解和各种参考资料用python写了一下

e1 = 44379563805854841580307748547737435172564831877127303051909203409873174780389273150966396080375621148040275710628408649117613085199533826455458312376264659153842853015345496268736337902730232293424031775369541079662258443836020140399047886828048837071536578243295077689245549921524765222192270061081366989243
N = 188115669939527035644766943794256836704505079895306601119938518634078379404429524926183546093986493443422022468844644307633083886388295943602507953702360632321739073592477683222131866451975315695813478098524853358977564134499058448438525811837376172990710150323209055804682074564005014776547535959114226010493
e2 = 112465763139808984065405993827008716763974555200543206549100182421914260511395374512318119557311872118857352370325610769529155517454000609905909538235321637165438962672069969201523246380106126889874030417878823876408727390390051948217715186480658609481138938023687641185709391304878382079926539531855678365763
d2 = 55881649455902117785162844948995531081646760354831350250450328774662614334096209227124014992837725793190883247171284132768863157972472923057215962250425474753160669444247876851199006665484502793278672692761545198268608005712388135980371518592854149756626148424994498979112285655516912703587302199972664162731
c = 166834578157098529809222592291594342260836191039081705782260506690911922650094691879568641873546447862853989518762075081785381252999566333779425586950217410876199240677942391128773211264433855236931134494842223272683014826519273429450763047329625425561073729238027952900168036140503255431512655421527963913597 from random import randint
import gmpy2
def oddR(r):
while r%2==0:
r=r//2
return r def bits(b):
k=[]
while b:
if b%2!=0:
k.append(1)
else:
k.append(0)
b>>=1
k.reverse() #对于List等Sequence等类型的变量,比如此处的List变量,其内置函数reverse,是直接操作变量本身,调用reverse后,变量本身的值就是reverse后的值了,所以不能出现:kk=k.reverse()这样的操作
return k def quickmod(a,b,n): #a^b mod n 快速幂模n运算
f=1
k=bits(b)
for i in range(len(k)):
f=(f*f)%n
if k[i]:
f=(f*a)%n
return f def gcd(m,n):
while(n!=0):
m,n=n,m%n
return m def func(e,d,N):
k=e*d-1 #k是一个even number
r=oddR(k) #求出k=2^t*r中的r while True:
b=randint(2,N-1) #获取区间(2,N-1)的一个随机数
a=quickmod(b,r,N) #求解出b^r mod N的值
if a==1: #如果求得的a=1,则需要重新获取一个随机数b
continue
y=gcd(a-1,N)
if a>1 and y>1: #a要大于1,
q=N//y
return q
else:
r=r*2 #如果不满足的话,b就平方 a0 = br, a1 = (a0)^2, a2 = (a1)^2,…, ak = (ak-1)^2 #print(func(3,16971,25777))
def deciphering(e1,e2,d,N,c): #e1用来求解p和q,e2用来求解e2*d=1 (mod)
p=func(e1,d,N)
q=N//p
phi=N-(p+q)+1 #N和phi之间的关系 d=gmpy2.invert(e2,phi) #得到e2对应的私钥d
m=gmpy2.powmod(c,d,N)
return d,m d,m=deciphering(e2,e1,d2,N,c)
print("The private key is:",d)
print("The message is:",m)

结果:

明文为:131

密钥为:72818963105077629740558410461847080457967247911531271148355717844840007560618118158503931879141520737129717539191898962908710378608064897528018640573684648011556192613882739251759874374669201358126911422986850885586463283920904391451268159684723197972233648239891580239064904439566608991520126027809037410483

Given d and e, factorize N to attack RSA的更多相关文章

  1. URAL 1141. RSA Attack RSA加密演算法

    标题来源:URAL 1141. RSA Attack 意甲冠军:给你e n c 并有m^e = c(mod n) 求 m 思路:首先学习RSA算法 here 过程大致是 1.发送的信息是m 2.随机选 ...

  2. 1141. RSA Attack(RSA)

    1141 越来越喜欢数论了 很有意思 先看个RSA的介绍 RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密. RSA的算法涉及三个参数,n ...

  3. id0-rsa WP合集

    忙里偷闲做做题wwwwwwwwwwwww Intro to Hashing Intro to PGP Hello PGP Hello OpenSSL Intro to RSA Caesar Hello ...

  4. 【Cocos2d-x for WP8 学习整理】(2)Cocos2d-Html5 游戏 《Fruit Attack》 WP8移植版 开源

    这一阵花了些时间,把 cocos2d-html5 里的sample 游戏<Fruit Attack>给移植到了WP8上来,目前已经实现了基本的功能,但是还有几个已知的bug,比如WP8只支 ...

  5. Web 服务器 low bandth DOS attack

    https://www.owasp.org/images/0/04/Roberto_Suggi_Liverani_OWASPNZDAY2010-Defending_against_applicatio ...

  6. CF 701B Cells Not Under Attack(想法题)

    题目链接: 传送门 Cells Not Under Attack time limit per test:2 second     memory limit per test:256 megabyte ...

  7. ASP.NET Padding Oracle Attack EXP

    #!/usr/bin/perl## PadBuster v0.3 - Automated script for performing Padding Oracle attacks# Brian Hol ...

  8. 人机接口设备攻击(HID Attack)

    人机接口设备攻击(HID Attack)   HID Attack是最近几年流行的一类攻击方式.HID是Human Interface Device的缩写,意思是人机接口设备.它是对鼠标.键盘.游戏手 ...

  9. Codeforces Round #364 (Div. 2) B. Cells Not Under Attack

    B. Cells Not Under Attack time limit per test 2 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. echo 换行与否

    echo默认是有换行的, -n的时候, 是不换行的.

  2. mycat分片操作

    mycat位于应用与数据库的中间层,可以灵活解耦应用与数据库,后端数据库可以位于不同的主机上.在mycat中将表分为两大类:对于数据量小且不需要做数据切片的表,称之为分片表:对于数据量大到单库性能,容 ...

  3. yii2项目中运行composer 过程中遇到的问题

    问题1: Your requirements could not be resolved to an installable set of packages 则表明 未安装fxp/composer-a ...

  4. php 微信支付V3 APP支付

    前言:微信支付现在分为v2版和v3版,2014年9月10号之前申请的为v2版,之后申请的为v3版.V3版的微信支付没有paySignKey参数. php 微信支付类 <?php class We ...

  5. fjwc2019

    机房搬迁.......再加上文化课.......咕了十几天才有空补上....... day0听一个教授讲理论......在学长的带领下咕掉了..... D1 T1:#178. 「2019冬令营提高组」 ...

  6. 深入理解 Vue 组件

    深入理解 Vue 组件 组件使用中的细节点 使用 is 属性,解决组件使用中的bug问题 <!DOCTYPE html> <html lang="en"> ...

  7. 利用shell脚本通过ssh绕过输入密码直接登录主机

    shell #!/usr/bin/expect spawn ssh root@192.168.137.141 expect "*password:" send "lizh ...

  8. opencv学习之路(8)、基本图像运算——加减与或

    一.图像加法 #include<opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespa ...

  9. Stanford CS231n实践笔记(课时14卷积神经网络详解 上)

    本课我们主要来研究一个"浏览器中的卷积神经网络" 这只是一个展示项目,但是能够帮助直观地看到一些东西 地址:https://cs.stanford.edu/people/karpa ...

  10. CentOS7的安装以及redis的下载安装和连接redis desktop manager出现的问题

    因为需要在springboot下使用redis,所以打算在linux下使用redis,并且使用redis desktop manage来连接管理,但是一路上出现个种问题现在总结一下. 如何安装Cent ...