排序算法<No.5>【堆排序】
算法,是系统软件开发,甚至是搞软件的技术人士的核心竞争力,这一点,我坚信不疑。践行算法实践,已经有一段时间没有practise了,今天来一个相对麻烦点的,堆排序。
1. 什么是堆(Heap)
这里说的堆,是一种数据结构,不是指计算机系统中的存储类型。堆是一种完全二叉树。说到完全二叉树,估计很多人都会想问,什么是完全二叉树,那满二叉树呢?先看看定义完全二叉树和满二叉树:
满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点。在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有2m-1个结点。
完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。
一般说的堆数据结构,都是指的二叉堆,二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。
堆的数据,通常是用数组进行存储的。
2. 什么是最大堆和最小堆
二叉堆常见的有最大堆和最小堆,但是不是所有的堆都是最大堆或者最小堆。
当父节点的键值总是大于任何一个子节点的键值时为最大堆,当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。
3. 堆节点和数组索引关系
为了更加形象,我们常用带数字的圆圈和线条来表示二叉堆等,但其实都是用数组来表示的。如果根节点在数组中的位置是1,第n个位置的子节点则分别在2n和2n+1位置上。这一点很重要,在算法实现中,不可忽视,堆数据的存储,总是从数组的下标1开始。
对于给定的某个结点的下标i,可以很容易的计算出这个结点的父结点、孩子结点的下标,而且计算公式很漂亮很简约(i表示的是数组中的第几个,对应的数组索引号+1):
PARENT(i)
return 小于或等于i/2的最大整数
LEFT-CHILD(i)
return 2i
RIGHT-CHILD(i)
return 2i+1
下面用一个图来形象描述一下堆与数组的关系。

4. 如何将一个节点所在的堆变成最大堆
程序中,不可能所有的堆都天生就是最大堆,为了更好的使用堆这一数据结构,我们可能要人为地构造最大堆。
如何将一个杂乱排序的堆重新构造成最大堆,它的主要思路是:
a. 从上往下,将父节点与子节点依次比较。
b. 如果父节点最大则进行下一步循环。
c. 如果子节点更大,则将子节点与父节点位置互换,并进行下一步循环。
d. 重复a-c的步骤
下面的例子,需要两步才能将节点2所在的堆整个堆排序成最大堆

下面,通过MAX-HEAPIFY(A,i)的伪代码,展示上述堆排序的逻辑:
MAX-HEAPIFY(A, i)
l=LEFT-CHILD(i) #LEFT-CHILD(i) = 2i
r=RIGHT-CHILD(i) #RIGHT-CHILD(i)=2i+1
if l<=A.hsize and A[l]>A[i] #A.hsize表示A中堆元素的个数
largest=l
else
largest=i
if r<=A.hsize and A[r]>A[largest]
largest=r
if largest != i
exchange A[i] with A[largest]
MAX-HEAPIFY(A, largest)
对于这个MAX-HEAPIFY伪代码,java代码实现为:
/**
* @author "shihuc"
* @date 2017年3月22日
*/
package heapSort; /**
* @author chengsh05
*
*/
public class MaxHeapify { static int hsize = ; /**
* @param args
*/
public static void main(String[] args) { int A[] = new int [] {, ,,,,,,,,};
/*
* 堆数据元素的个数,在这个例子中是数组长度 - 1
*/
hsize = A.length - ;
MaxHeapify mh = new MaxHeapify(); /*
* 注意,取父节点序号时,必须从1开始取。
* 这里,主要是用来测试maxHeapify函数,对任何入口的效果。
*/
for(int i = ; i<hsize; i++){
mh.maxHeapify(A, i, hsize);
} for(int i = ; i<A.length; i++){
System.out.print(A[i] + ", ");
}
} /**
* 获取当前节点i的左孩子节点在堆数据数组中的序号
*
* @param i 父节点序号
* @return 左孩子节点序号
*/
private int heapLeft(int i) {
return *i;
} /**
* 获取当前节点i的右孩子节点在堆数据数组中的序号
*
* @param i 父节点序号
* @return 右孩子节点序号
*/
private int heapRight(int i) {
return *i + ;
} /**
* 将堆A中的数据进行位置a,b上的数字交换
*
* @param A 堆数据数组
* @param a 原始数据序号
* @param b 待交换数据序号
*/
public void exchange(int A[], int a, int b) {
A[a] = A[a] ^ A[b];
A[b] = A[b] ^ A[a];
A[a] = A[a] ^ A[b];
} /**
* 将当前堆调整成为一个最大堆。
*
* @param A 待调整的堆数据数组
* @param i 当前的父节点序号
* @param heapSize 堆的元素个数
*/
public void maxHeapify(int A[], int i, int heapSize){
int larger = -;
int l = heapLeft(i);
int r = heapRight(i);
if (l <= heapSize && A[l] > A[i]){
larger = l;
}else{
larger = i;
}
if (r <= heapSize && A[r] > A[larger]){
larger = r;
}
if (larger != i){
exchange(A, i, larger);
maxHeapify(A, larger, heapSize);
}
}
}
基于已有的MAX-HEAPIFY(A,i)来构建一个方法,能对所有的节点对应的堆数据结构进行调整,让这个A堆数据成为最大堆。
回顾一下上面的图示,其总共有9个结点,取小于或等于9/2的最大整数为4,从4+1,4+2,一直到n都是该树的叶子结点。这个现象,这对任意n都是成立的。
下面是构建一个最大堆的伪代码:
BUILD-MAX-HEAP(A)
A.hsize=A.length
for i=小于或等于A.length/2的最大整数 downto 1
MAX-HEAPIFY(A, i)
上面的伪代码,对应的图示流程如下图:

构建最大堆的java实现代码:
/**
* @author "shihuc"
* @date 2017年3月22日
*/
package heapSort; /**
* @author chengsh05
*
*/
public class BuildMaxHeap { /**
* @param args
*/
public static void main(String[] args) {
//int A[] = new int[] {0, 7,25,15,5,12,20,13,18,10};
int A[] = new int [] {, ,,,,,,,,};
BuildMaxHeap bmh = new BuildMaxHeap();
bmh.buildMaxHeap(A, A.length-);
for(int i=; i<A.length; i++){
System.out.print(A[i] + ", ");
}
} private int getStartIdx(int len) {
return (int)Math.floor(len/);
} public void buildMaxHeap(int A[], int heapSize){
MaxHeapify mh = new MaxHeapify();
for(int i=getStartIdx(A.length); i>=; i--){
mh.maxHeapify(A, i, heapSize);
}
}
}
其中MaxHeapify类,就是前述步骤中实现的类。
5. 堆排序实现
所谓的堆排序算法,先通过前面的BUILD-MAX-HEAP(A)将输入数组A[1...n]建成最大堆,其中n=A.length。而数组中的元素总在根结点A[1]中,通过把它与A[n]进行互换,就能将该元素放到正确的位置。基于上面前几部的理论分析,将堆调整成为最大堆后,A[1]的值总是堆中的最大值。
如何让原来根的子结点仍然是最大堆呢,可以通过从堆中去掉结点n,而这可以通过减少A.hsize来间接的完成。但这样一来新的根节点就违背了最大堆的性质,因此仍然需要调用MAX-HEAPIFY(A,1),从而在A[1...n−1]上构造一个新的最大堆。
通过不断重复这一过程,直到堆的大小从n−1一直降到2即可。
实现步骤:
a. 通过BUILD-MAX-HEAP(A)构建最大堆
b. 将A[1]与A[x]交换,其中x取值范围[A.length, 2]降序取值。
c. 调整A.hsize = A.hsize - 1
d. 调用MAX-HEAPIFY(A,1)
e. 若x大于2,跳转到b处,继续后续步骤。
上述过程的伪代码如下:
HEAPSORT(A)
BUILD-MAX-HEAP(A)
for i=A.length downto 2
exchange A[1] with A[i]
A.heap-size=A.heap-size-1
MAX-HEAPIFY(A,1)
下面就用一个例子,结合上述伪代码,形象的介绍堆排序的过程。待排序的堆:9,18,21,23,222,121,234,90,211

经过上述堆排序后,得到的排序后的结果为:9,18,21,23,90,121,211,222,234
针对上述堆排序的伪代码,其对应的java代码实现:
/**
* @author "shihuc"
* @date 2017年3月23日
*/
package heapSort; import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner; /**
* @author chengsh05
*
* 堆排序,主要实现思路:
* a. 通过BUILD-MAX-HEAP(A)构建最大堆
* b. 将A[1]与A[x]交换,其中x取值范围[A.length, 2]降序取值。
* c. 调整A.hsize = A.hsize - 1
* d. 调用MAX-HEAPIFY(A,1)
* e. 若x大于2,跳转到b处,继续后续步骤。
*
*/
public class HeapSort { /**
* @param args
*/
public static void main(String[] args) {
File file = new File("./src/heapSort/sample.txt");
Scanner sc = null;
try {
sc = new Scanner(file);
int N = sc.nextInt();
for(int i=; i<N; i++){
int S = sc.nextInt();
int A[] = new int[S+];
for(int j=; j<S; j++){
A[j+] = sc.nextInt();
}
print(A, i, "is going to sort...");
heapSort(A);
print(A, i, "has been sorted....");
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} finally {
if(sc != null){
sc.close();
}
}
} /**
* 用来打印输出堆中的数据内容。
*
* @param A 堆对应的数组
* @param idx 当前是第几组待测试的数据
* @param info 打印中输出的特殊信息
*/
private static void print(int A[], int idx, String info){
System.out.println(String.format("No. %02d %s ====================== ", idx, info));
for(int i=; i<A.length; i++){
System.out.print(A[i] + ", ");
}
System.out.println();
} /**
* 堆排序的具体实现过程
*
* @param A 待排序的堆
*/
public static void heapSort(int A[]){
BuildMaxHeap bmh = new BuildMaxHeap();
MaxHeapify mh = new MaxHeapify();
int hsize = A.length - ;
/*
* 实现步骤(a)
* 将当前待排序的堆构建成一个最大堆
*/
bmh.buildMaxHeap(A, hsize);
print(A, , "*****");
/*
* 实现步骤(e)
* 下面的for循环,就是在重复步骤b-d,直到堆长度为1
*/
for(int i=A.length - ; i>=; i--){
/*
* 实现步骤(b)
* 将堆结构中数组下标为1的数据与堆尾的数据互换位置
*/
mh.exchange(A, i, );
/*
* 实现步骤(c)
* 调整堆的实际长度。每次调整堆成最大堆并将堆的root节点取出后,原始堆的长度将减小1
*/
hsize--;
/*
* 实现步骤(d)
* 调用MAX-HEAPIFY(A,1)函数重新调整新堆为最大堆
*/
mh.maxHeapify(A, , hsize);
print(A, hsize, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
}
}
其中,sample.txt的测试数据为:
输出结果为:
No. is going to sort... ======================
, , , , , , ,
No. ***** ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. has been sorted.... ======================
, , , , , , ,
No. is going to sort... ======================
, , , , , , , , , ,
No. ***** ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , ,
No. has been sorted.... ======================
, , , , , , , , , ,
No. is going to sort... ======================
, , , , , , , , , , ,
No. ***** ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , , , ,
No. has been sorted.... ======================
, , , , , , , , , , ,
No. is going to sort... ======================
, , , , , , ,
No. ***** ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , ,
No. has been sorted.... ======================
, , , , , , ,
No. is going to sort... ======================
, , , , , , , , ,
No. ***** ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ======================
, , , , , , , , ,
No. has been sorted.... ======================
, , , , , , , , ,
结合上述的测试例以及打印输出的内容,对于理解堆排序应该是很容易的事情了,虽然麻烦了点。但是思路非常清晰易懂。其实也是一种选择排序的思路。
其时间复杂度为O(nlogn)。属于不稳定排序。至于什么是不稳定,自己看相关资料吧。
排序算法<No.5>【堆排序】的更多相关文章
- 数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序
优先队列及堆排序 堆排序(Heap Sort)由威尔士-加拿大计算机科学家J. W. J. Williams在1964年发明,它利用了二叉堆(A binary heap)的性质实现了排序,并证明了二叉 ...
- 排序算法三:堆排序(Heapsort)
堆排序(Heapsort)是一种利用数据结构中的堆进行排序的算法,分为构建初始堆,减小堆的元素个数,调整堆共3步. (一)算法实现 protected void sort(int[] toSort) ...
- 排序算法入门之堆排序(Java实现)
堆排序 在学习了二叉堆(优先队列)以后,我们来看看堆排序.堆排序总的运行时间为O(NlonN). 堆的概念 堆是以数组作为存储结构. 可以看出,它们满足以下规律: 设当前元素在数组中以R[i]表示,那 ...
- 【Java】 大话数据结构(16) 排序算法(3) (堆排序)
本文根据<大话数据结构>一书,实现了Java版的堆排序. 更多:数据结构与算法合集 基本概念 堆排序种的堆指的是数据结构中的堆,而不是内存模型中的堆. 堆:可以看成一棵完全二叉树,每个结点 ...
- Java数据结构与排序算法——堆和堆排序
//================================================= // File Name : Heap_demo //--------------------- ...
- 排序算法(三)堆排序及有界堆排序Java实现及分析
1.堆排序基数排序适用于大小有界的东西,除了他之外,还有一种你可能遇到的其它专用排序算法:有界堆排序.如果你在处理非常大的数据集,你想要得到前 10 个或者前k个元素,其中k远小于n,它是很有用的. ...
- 常用排序算法的python实现和性能分析
常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...
- 【Python】常用排序算法的python实现和性能分析
作者:waterxi 原文链接 背景 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试题整 ...
- 面试中常用排序算法的python实现和性能分析
这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都尽可能的用大白话 ...
- 经典的7种排序算法 原理C++实现
排序是编程过程中经常遇到的操作,它在很大程度上影响了程序的执行效率. 7种常见的排序算法大致可以分为两类:第一类是低级排序算法,有选择排序.冒泡排序.插入排序:第二类是高级排序算法,有堆排序.排序树. ...
随机推荐
- i.MX6 设备树 GPIO 默认值
/********************************************************************** * i.MX6 设备树 GPIO 默认值 * 说明: * ...
- 【Leetcode】292. Nim Game
problem 292. Nim Game solution class Solution { public: bool canWinNim(int n) { ; } }; 来generalize一下 ...
- MySQL中的存储过程和函数使用详解
一.对待存储过程和函数的态度 在实际项目中应该尽量少用存储过程和函数,理由如下: 1.移植性差,在MySQL中的存储过程移植到sqlsever上就不一定可以用了. 2.调试麻烦,在db中报一个错误和在 ...
- Unity调用Windows对话框保存时另存为弹框
Unity开发VR之Vuforia 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- ...
- Unity射线检测的用法总结
RayCast 射线检测 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- 心分享.心 ...
- CodeForces - 1099F:Cookies (线段树)
Mitya and Vasya are playing an interesting game. They have a rooted tree with n vertices, and the ve ...
- 测试那些事儿—web测试方法之输入框
一.字符型输入 (1)字符型输入框 英文全角,英文半角,数字,空或者空格,特殊字符“~!@#¥%.......&*?{}[]"特别要注意单引号和&符号.禁止直接输入特殊字符时 ...
- xdoj 1241--余神的rp机(区间dp)
xdoj 1241---余神的rp机 核
- 20155208 《Java程序设计》实验一(Java开发环境的熟悉)实验报告
20155208 <Java程序设计>实验一(Java开发环境的熟悉)实验报告 一.实验内容及步骤 (一)使用JDK编译.运行简单的java程序 命令行下的程序开发 打开windows下的 ...
- 计算x
如果x的x次幂结果为10(参见[图1.png]),你能计算出x的近似值吗? 显然,这个值是介于2和3之间的一个数字. 请把x的值计算到小数后6位(四舍五入),并填写这个小数值. 注意:只填写一个小数, ...