E. Okabe and El Psy Kongroo
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Okabe likes to take walks but knows that spies from the Organization could be anywhere; that's why he wants to know how many different walks he can take in his city safely. Okabe's city can be represented as all points (x, y) such that x and y are non-negative. Okabe starts at the origin (point (0, 0)), and needs to reach the point (k, 0). If Okabe is currently at the point (x, y), in one step he can go to (x + 1, y + 1), (x + 1, y), or (x + 1, y - 1).

Additionally, there are n horizontal line segments, the i-th of which goes from x = ai to x = bi inclusive, and is at y = ci. It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n. The i-th line segment forces Okabe to walk with y-value in the range 0 ≤ y ≤ ci when his x value satisfies ai ≤ x ≤ bi, or else he might be spied on. This also means he is required to be under two line segments when one segment ends and another begins.

Okabe now wants to know how many walks there are from the origin to the point (k, 0) satisfying these conditions, modulo 109 + 7.

Input

The first line of input contains the integers n and k (1 ≤ n ≤ 100, 1 ≤ k ≤ 1018) — the number of segments and the destination x coordinate.

The next n lines contain three space-separated integers ai, bi, and ci (0 ≤ ai < bi ≤ 1018, 0 ≤ ci ≤ 15) — the left and right ends of a segment, and its y coordinate.

It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n.

Output

Print the number of walks satisfying the conditions, modulo 1000000007 (109 + 7).

Examples
Input
1 3
0 3 3
Output
4
Input
2 6
0 3 0
3 10 2
Output
4
Note

The graph above corresponds to sample 1. The possible walks are:

The graph above corresponds to sample 2. There is only one walk for Okabe to reach (3, 0). After this, the possible walks are:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<bitset>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e5+,M=4e6+,inf=,mod=1e9+;
const LL INF=1e18+,MOD=1e9+; struct Matrix
{
LL a[][];
Matrix()
{
memset(a,,sizeof(a));
}
void init()
{
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=(i==j);
}
Matrix operator + (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int j=;j<;j++)
C.a[i][j]=(a[i][j]+B.a[i][j])%MOD;
return C;
}
Matrix operator * (const Matrix &B)const
{
Matrix C;
for(int i=;i<;i++)
for(int k=;k<;k++)
for(int j=;j<;j++)
C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j])%MOD;
return C;
}
Matrix operator ^ (const LL &t)const
{
Matrix A=(*this),res;
res.init();
LL p=t;
while(p)
{
if(p&)res=res*A;
A=A*A;
p>>=;
}
return res;
}
};
map<pair<LL,int> ,LL >dp;
LL a[N],b[N];int c[N];
Matrix Gbase(int n)
{
Matrix a;
a.init();
for(int i=;i<=n;i++)
{
if(i->=)a.a[i-][i]=;
a.a[i][i]=;
if(i+<=n)a.a[i+][i]=;
}
return a;
}
Matrix Gpre(LL x,int n)
{
Matrix a;
a.init();
for(int i=;i<=n;i++)
a.a[][i]=dp[make_pair(x,i)];
return a;
}
int main()
{
int n;
LL k;
scanf("%d%lld",&n,&k);
for(int i=;i<=n;i++)
scanf("%lld%lld%d",&a[i],&b[i],&c[i]);
dp[make_pair(,)]=;
for(int i=;i<=n;i++)
{
Matrix base=Gbase(c[i]);
Matrix pre=Gpre(a[i],c[i]);
LL l=a[i],r=min(b[i],k);
base=base^(r-l);
Matrix ans=pre*base;
for(int j=;j<=c[i];j++)
dp[make_pair(r,j)]=ans.a[][j];
if(b[i]>=k)break;
}
printf("%lld\n",dp[make_pair(k,)]);
return ;
}

Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo 矩阵快速幂优化dp的更多相关文章

  1. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo DP+矩阵快速幂加速

    E. Okabe and El Psy Kongroo     Okabe likes to take walks but knows that spies from the Organization ...

  2. Codeforces Round #420 (Div. 2) E. Okabe and El Psy Kongroo dp+矩阵快速幂

    E. Okabe and El Psy Kongroo   Okabe likes to take walks but knows that spies from the Organization c ...

  3. CF821 E. Okabe and El Psy Kongroo 矩阵快速幂

    LINK 题意:给出$n$条平行于x轴的线段,终点$k$坐标$(k <= 10^{18})$,现在可以在线段之间进行移动,但不能超出两条线段的y坐标所夹范围,问到达终点有几种方案. 思路:刚开始 ...

  4. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations (矩阵高速幂)

    题目地址:http://codeforces.com/contest/551/problem/D 分析下公式能够知道,相当于每一位上放0或者1使得最后成为0或者1.假设最后是0的话,那么全部相邻位一定 ...

  5. Codeforces Round #189 (Div. 1) C - Kalila and Dimna in the Logging Industry 斜率优化dp

    C - Kalila and Dimna in the Logging Industry 很容易能得到状态转移方程 dp[ i ] = min( dp[ j ] + b[ j ] * a[ i ] ) ...

  6. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp

    D. GukiZ and Binary Operations time limit per test 1 second memory limit per test 256 megabytes inpu ...

  7. Codeforces Round #420 (Div. 2)

    /*************************************************************************************************** ...

  8. Codeforces Round #420 (Div. 2) A-E

    本来打算划划水洗洗睡了,突然听到这次的主人公是冈部伦太郎 石头门(<steins;gate>)主题的比赛,岂有不打之理! 石头门真的很棒啊!人设也好剧情也赞曲子也特别好听. 推荐http: ...

  9. Codeforces 821E Okabe and El Psy Kongroo(矩阵快速幂)

    E. Okabe and El Psy Kongroo time limit per test 2 seconds memory limit per test 256 megabytes input ...

随机推荐

  1. cms STW 的两个阶段

    CMS在初始标记和重复标记阶段会停顿

  2. 安装启动kafka

    vim kafka/config/server.properties #确保唯一 broker.id=0 #允许删除主题 delete.topic.enable=true # 指定数据文件所在目录 l ...

  3. Python小项目四:实现简单的web服务器

    https://blog.csdn.net/u010103202/article/details/74002538 本博客是整理在学习实验楼的课程过程中记录下的笔记形成的,参考:https://www ...

  4. Docker学习笔记之docker volume 容器卷的那些事(一)

    预览目录 volume 方式 相关用例 使用方式 使用 volume driver bind mount 方式 相关用例 使用方式 配置selinux标签 配置macOS的安装一致性 tmpfs 方式 ...

  5. mysql Out of range value adjusted for column导致Warning(1265)Data truncated for column 'column_name' at row 1

    今天下午,我们的一个开发来找我,说线上有个环境报了"Warning(1265)Data truncated for column 'column_name' at row 1",定 ...

  6. android之csv导出

    import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.Fi ...

  7. AppStore 添加回复

    itunes connect 评论位置 1, 2, 添加用户权限:除了管理和客户支持可以回复.开发人员等只有只读权限

  8. Mac10.13 telnet不能用的解决方法

    telnet在Mac 10.13上不能用了 Restore的方法 brew install inetutils To be clear, brew install inetutils will ins ...

  9. Python3 tkinter基础 Entry get 点击按钮 将输入框中文字输出到控制台

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  10. RabbitMQ 入门指南——初步使用

    MQ的消息持久化 https://www.rabbitmq.com/tutorials/tutorial-two-java.html When RabbitMQ quits or crashes it ...