洛谷 P1002 过河卒 【棋盘dp】
题目链接:https://www.luogu.org/problemnew/show/P1002
题目描述
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入输出格式
输入格式:
一行四个数据,分别表示B点坐标和马的坐标。
输出格式:
一个数据,表示所有的路径条数。
输入输出样例
6 6 3 3
6
说明
结果可能很大!
#include<cstdio>
using namespace std;
const int MAXN = ;
int d[][] = { { , },{ ,- },{ -, },{ -,- },{ , },{ ,- },{ -, },{ -,- } }; //马走的八个方向,这上面的点为-1表示不能走
long long f[MAXN][MAXN];
int n, m, x, y;
int main()
{
scanf("%d%d%d%d", &n, &m, &x, &y);
f[x][y] = -;
for (int i = ; i<; i++)
if (x + d[i][] >= && x + d[i][] <= n && y + d[i][] >= && y + d[i][] <= m)
f[x + d[i][]][y + d[i][]] = -; //所有马控制的区域都标记为-1
if (f[][] != -) //注意马有可能在起始点上
{
f[][] = ; //递推初始状态,到起点只有1种方法
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (f[i][j] != -)
{ //只能从两个方向接近
if (i&&f[i - ][j] != -) f[i][j] += f[i - ][j]; //向下走的情况 用i&&来判断,防止数组下标i-1为负数
if (j&&f[i][j - ] != -) f[i][j] += f[i][j - ]; //向右走的情况
}
}
printf("%lld\n", f[n][m]);
}
else printf("0\n");
return ;
}
2018-05-15
洛谷 P1002 过河卒 【棋盘dp】的更多相关文章
- 洛谷P1002 过河卒【dp】
棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为"马拦过河卒 ...
- 洛谷 - P1002 - 过河卒 - 简单dp
https://www.luogu.org/problemnew/show/P1002 方程很好想,题目也很暴力.感谢题目提示数据会很大. #include<bits/stdc++.h> ...
- 洛谷 P1002过河卒
洛谷 P1002过河卒 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点 ...
- 洛谷P1002 过河卒 [2017年4月计划 动态规划15]
P1002 过河卒 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之 ...
- 洛谷[P1002]过河卒
原题地址:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...
- 洛谷P1002 过河卒
关于蒟蒻的我,刚刚接触DP.... 那么就来做一道简单DP吧.... 首先先看题: 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一 ...
- 洛谷P1002 过河卒 题解 动态规划
题目链接:https://www.luogu.com.cn/problem/P1002 题目大意 棋盘上\(A\)点有一个过河卒,需要走到目标\(B\)点.卒行走的规则:可以向下.或者向右.同时在棋盘 ...
- 【做题笔记】洛谷P1002过河卒
虽说是 dp 入门题,但还是有很多细节需要注意 如果设 \(f_{x,y}\) 为目标地点为 \((x,y)\) 时走的种数,那么答案就是 \(f_{n,m}\) 在不考虑那只讨厌的马的情况下,对于任 ...
- 洛谷P1002——过河卒
又是洛谷题,要不是有小姐姐不会,我才不想动脑子.先贴一下题目地址https://www.luogu.org/problem/P1002 再贴一下题目: 我们读一下题目,这可不比学校的**算法题,读完一 ...
随机推荐
- Database学习 - mysql 数据库 事务操作
事务 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 数据库开启事务命令: start transaction 开启事务 rollback 回滚事务,即撤销指定的 ...
- 2018-2019-2 网络对抗技术 20165227 Exp5 MSF基础应用
2018-2019-2 网络对抗技术 20165227 Exp5 MSF基础应用 Exploit选取 主动攻击:ms17_010_eternalblue(成功) 浏览器攻击: ms10_042_hel ...
- SpringBoot注册Servlet、Filter、Listener
SpringBoot默认是以jar包的方式启动嵌入式的Servlet容易来启动SpringBoot的Web应用,没有web.xml文件 因此我们可以使用以下方式来注册Servlet.Filter.Li ...
- git获取内核源码的方法
[转]http://www.360doc.com/content/17/0410/16/23107068_644444795.shtml 1. 前言 本文主要讲述ubuntu下通过git下载linux ...
- dup,dup2函数【转】
转自:http://eriol.iteye.com/blog/1180624 转自:http://www.cnblogs.com/jht/archive/2006/04/04/366086.html ...
- ubuntu 的 apt-get update 出现404错误时,或者添加ppa失败时,ubuntu 版本也 end of life 了的解决方案
xmodulo.com/how-to-fix-apt-get-update-error-on-ubuntu.html 如果是依赖没找到,可以用 sudo apt-get install -f 先补齐依 ...
- 3种shell自动交互的方法【转】
一.背景 shell脚本在处理自动循环或大的任务方面可节省大量的时间,通过创建一个处理任务的命令清单,使用变量.条件.算术和循环等方法快速创建脚本以完成相应工作,这比在命令行下一个个敲入命令要省时省力 ...
- Visual Studio 2017中的快捷键
Ctrl+Tab: 快速切换活动文件
- maven 跳过test
-DskipTests,不执行测试用例,但编译测试用例类生成相应的class文件至target/test-classes下. -Dmaven.test.skip=true,不执行测试用例,也不编译测试 ...
- idea开发swing(二)
闲话少说,书接idea开发swing(一). 程序编译完成后,需要打包发布,如果有fat_jar的同学可以通过该插件打包,这里是使用ant来打包,步骤如下: 一.编写build.xml <?xm ...