C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)
前面八章介绍了 C++11 并发编程的基础(抱歉哈,第五章-第八章还在草稿中),本文将综合运用 C++11 中的新的基础设施(主要是多线程、锁、条件变量)来阐述一个经典问题——生产者消费者模型,并给出完整的解决方案。
生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。
单生产者-单消费者模型
顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
size_t read_position; // 消费者读取产品位置.
size_t write_position; // 生产者写入产品位置.
std::mutex mtx; // 互斥量,保护产品缓冲区
std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量. typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
} (ir->item_buffer)[ir->write_position] = item; // 写入产品.
(ir->write_position)++; // 写入位置后移. if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
ir->write_position = ; (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
lock.unlock(); // 解锁.
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
} data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
(ir->read_position)++; // 读取位置后移 if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
ir->read_position = ; (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
lock.unlock(); // 解锁. return data; // 返回产品.
} void ProducerTask() // 生产者任务
{
for (int i = ; i <= kItemsToProduce; ++i) {
// sleep(1);
std::cout << "Produce the " << i << "^th item..." << std::endl;
ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
}
} void ConsumerTask() // 消费者任务
{
static int cnt = ;
while() {
sleep();
int item = ConsumeItem(&gItemRepository); // 消费一个产品.
std::cout << "Consume the " << item << "^th item" << std::endl;
if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ; // 初始化产品写入位置.
ir->read_position = ; // 初始化产品读取位置.
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask); // 创建生产者线程.
std::thread consumer(ConsumerTask); // 创建消费之线程.
producer.join();
consumer.join();
}
单生产者-多消费者模型
与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
for (int i = ; i <= kItemsToProduce; ++i) {
// sleep(1);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " producing the " << i << "^th item..." << std::endl;
ProduceItem(&gItemRepository, i);
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.item_counter);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask);
std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer.join();
consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}
多生产者-单消费者模型
与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce) {
++(gItemRepository.item_counter);
ProduceItem(&gItemRepository, gItemRepository.item_counter);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is producing the " << gItemRepository.item_counter
<< "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
static int item_consumed = ;
while() {
sleep();
++item_consumed;
if (item_consumed <= kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask);
std::thread consumer(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join();
consumer.join();
}
多生产者-多消费者模型
该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。
代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t produced_item_counter;
size_t consumed_item_counter;
std::mutex mtx;
std::mutex produced_item_counter_mtx;
std::mutex consumed_item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
if (gItemRepository.produced_item_counter < kItemsToProduce) {
++(gItemRepository.produced_item_counter);
ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is producing the " << gItemRepository.produced_item_counter
<< "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
if (gItemRepository.consumed_item_counter < kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.consumed_item_counter);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->produced_item_counter = ;
ir->consumed_item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask); std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join(); consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}
另外,所有例子的代码(包括前面一些指南的代码均放在github上),希望对大家学习 C++11 多线程并发有所帮助。
C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)的更多相关文章
- 综合运用: C++11 多线程下生产者消费者模型详解(转)
生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源.本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模 ...
- C++11 并发指南系列
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- C++11 并发指南系列(转)
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- 【C/C++开发】C++11 并发指南三(std::mutex 详解)
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- C++11 并发指南后续更新
C++11 并发指南的第一篇是 2013 年 8 月 3 号写的,到今天(2013 年 8 月 31 号)差不多一个月了,前前后后共写了 6 章(目前共 8 篇)博客介绍 C++11 的并发编程,但还 ...
- C++11 并发指南三(Lock 详解)
在 <C++11 并发指南三(std::mutex 详解)>一文中我们主要介绍了 C++11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型.本节将详细介绍一下 C++11 标准 ...
- C++11 并发指南六(atomic 类型详解四 C 风格原子操作介绍)
前面三篇文章<C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍)>.<C++11 并发指南六( <atomic> 类型详解二 std::at ...
- C++11 并发指南六(atomic 类型详解三 std::atomic (续))
C++11 并发指南六( <atomic> 类型详解二 std::atomic ) 介绍了基本的原子类型 std::atomic 的用法,本节我会给大家介绍C++11 标准库中的 std: ...
- C++11 并发指南六( <atomic> 类型详解二 std::atomic )
C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍) 一文介绍了 C++11 中最简单的原子类型 std::atomic_flag,但是 std::atomic_flag ...
随机推荐
- PostgreSQL的SQL语句中的双引号引发的问题
最近开发一个WEB的ETL工具需要用到不同的数据源.第一次用POSTGRESQL发现一个双引号引发的问题: 标准的SQL是不区分大小写的.但是PostgreSQL对于数据库中对象的名字允许使用支持大小 ...
- thinkphp3.2自定义success及error跳转页面
首先我们需要配置目录 在conf下新建一个config文件 <?php return array( 'TMPL_ACTION_SUCCESS'=>'Public:dispatch_jump ...
- 【AtCoder】ARC082
C - Together 用一个数组记一下一个数给它本身,左右贡献都是1,看看哪个数的总贡献最大 #include <bits/stdc++.h> #define fi first #de ...
- Nginx 启动脚本,超级详细
转载自:https://www.cnblogs.com/leffss/p/7845303.html
- 第八章| 3. MyAQL数据库|Navicat工具与pymysql模块 | 内置功能 | 索引原理
1.Navicat工具与pymysql模块 在生产环境中操作MySQL数据库还是推荐使用命令行工具mysql,但在我们自己开发测试时,可以使用可视化工具Navicat,以图形界面的形式操作MySQL数 ...
- 第七章|7.4并发编程| I/O模型
I/O模型 协程是单线程下的并发,并不是对性能都有所提升,一定是监测单个线程下的多个任务的I/O,遇到I/O不要让它阻塞,给它自动切换到其他任务去,这样就能提高单个线程下的运行效率.--->&g ...
- .NET Core中使用Docker
一.Docker简介 Docker是基于Linux容器技术(LXC),使用Go语言实现的开源项目,诞生于2013年,遵循Apache2.0协议.Docker自开源后,受到广泛的关注和讨论. Docke ...
- hystrix dashboard Unable to connect to Command Metric Stream解决办法
spring cloud 在初次使用 hystrix dashboard仪表盘的时候很容易出现hystrix dashboard Unable to connect to Command Metric ...
- 幕布V1.1.9最新版漏洞集合
0X00 前言 幕布本人最早接触是在P神的知识星球里面看到P神推荐的,后来下了个用着还挺好用. 之前一直都放一些零零散散的笔记,最近整理的时候,一时兴起,本着漏洞源于生活的态度,遂对幕布的安全性做了些 ...
- Python学习——深浅拷贝
1.对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. >>> import copy # ######### 数字.字符串 ######### ...