C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)
前面八章介绍了 C++11 并发编程的基础(抱歉哈,第五章-第八章还在草稿中),本文将综合运用 C++11 中的新的基础设施(主要是多线程、锁、条件变量)来阐述一个经典问题——生产者消费者模型,并给出完整的解决方案。
生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。
单生产者-单消费者模型
顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
size_t read_position; // 消费者读取产品位置.
size_t write_position; // 生产者写入产品位置.
std::mutex mtx; // 互斥量,保护产品缓冲区
std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量. typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
} (ir->item_buffer)[ir->write_position] = item; // 写入产品.
(ir->write_position)++; // 写入位置后移. if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
ir->write_position = ; (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
lock.unlock(); // 解锁.
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
} data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
(ir->read_position)++; // 读取位置后移 if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
ir->read_position = ; (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
lock.unlock(); // 解锁. return data; // 返回产品.
} void ProducerTask() // 生产者任务
{
for (int i = ; i <= kItemsToProduce; ++i) {
// sleep(1);
std::cout << "Produce the " << i << "^th item..." << std::endl;
ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
}
} void ConsumerTask() // 消费者任务
{
static int cnt = ;
while() {
sleep();
int item = ConsumeItem(&gItemRepository); // 消费一个产品.
std::cout << "Consume the " << item << "^th item" << std::endl;
if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ; // 初始化产品写入位置.
ir->read_position = ; // 初始化产品读取位置.
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask); // 创建生产者线程.
std::thread consumer(ConsumerTask); // 创建消费之线程.
producer.join();
consumer.join();
}
单生产者-多消费者模型
与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
for (int i = ; i <= kItemsToProduce; ++i) {
// sleep(1);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " producing the " << i << "^th item..." << std::endl;
ProduceItem(&gItemRepository, i);
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.item_counter);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask);
std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer.join();
consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}
多生产者-单消费者模型
与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce) {
++(gItemRepository.item_counter);
ProduceItem(&gItemRepository, gItemRepository.item_counter);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is producing the " << gItemRepository.item_counter
<< "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
static int item_consumed = ;
while() {
sleep();
++item_consumed;
if (item_consumed <= kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask);
std::thread consumer(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join();
consumer.join();
}
多生产者-多消费者模型
该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。
代码如下:
#include <unistd.h> #include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread> static const int kItemRepositorySize = ; // Item buffer size.
static const int kItemsToProduce = ; // How many items we plan to produce. struct ItemRepository {
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t produced_item_counter;
size_t consumed_item_counter;
std::mutex mtx;
std::mutex produced_item_counter_mtx;
std::mutex consumed_item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while(((ir->write_position + ) % kItemRepositorySize)
== ir->read_position) { // item buffer is full, just wait here.
std::cout << "Producer is waiting for an empty slot...\n";
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while(ir->write_position == ir->read_position) {
std::cout << "Consumer is waiting for items...\n";
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
if (gItemRepository.produced_item_counter < kItemsToProduce) {
++(gItemRepository.produced_item_counter);
ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is producing the " << gItemRepository.produced_item_counter
<< "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Producer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void ConsumerTask()
{
bool ready_to_exit = false;
while() {
sleep();
std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
if (gItemRepository.consumed_item_counter < kItemsToProduce) {
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.consumed_item_counter);
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is consuming the " << item << "^th item" << std::endl;
} else ready_to_exit = true;
lock.unlock();
if (ready_to_exit == true) break;
}
std::cout << "Consumer thread " << std::this_thread::get_id()
<< " is exiting..." << std::endl;
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->produced_item_counter = ;
ir->consumed_item_counter = ;
} int main()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask); std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join(); consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}
另外,所有例子的代码(包括前面一些指南的代码均放在github上),希望对大家学习 C++11 多线程并发有所帮助。
C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)的更多相关文章
- 综合运用: C++11 多线程下生产者消费者模型详解(转)
生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源.本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模 ...
- C++11 并发指南系列
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- C++11 并发指南系列(转)
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- 【C/C++开发】C++11 并发指南三(std::mutex 详解)
本系列文章主要介绍 C++11 并发编程,计划分为 9 章介绍 C++11 的并发和多线程编程,分别如下: C++11 并发指南一(C++11 多线程初探)(本章计划 1-2 篇,已完成 1 篇) C ...
- C++11 并发指南后续更新
C++11 并发指南的第一篇是 2013 年 8 月 3 号写的,到今天(2013 年 8 月 31 号)差不多一个月了,前前后后共写了 6 章(目前共 8 篇)博客介绍 C++11 的并发编程,但还 ...
- C++11 并发指南三(Lock 详解)
在 <C++11 并发指南三(std::mutex 详解)>一文中我们主要介绍了 C++11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型.本节将详细介绍一下 C++11 标准 ...
- C++11 并发指南六(atomic 类型详解四 C 风格原子操作介绍)
前面三篇文章<C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍)>.<C++11 并发指南六( <atomic> 类型详解二 std::at ...
- C++11 并发指南六(atomic 类型详解三 std::atomic (续))
C++11 并发指南六( <atomic> 类型详解二 std::atomic ) 介绍了基本的原子类型 std::atomic 的用法,本节我会给大家介绍C++11 标准库中的 std: ...
- C++11 并发指南六( <atomic> 类型详解二 std::atomic )
C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍) 一文介绍了 C++11 中最简单的原子类型 std::atomic_flag,但是 std::atomic_flag ...
随机推荐
- [转] Optimizely:在线网站A/B测试平台
Optimizely:在线网站A/B测试平台是一家提供 A/B 测试服务的公司.A/B 测试能够对比不同版本的设计,选取更吸引用户眼球的那一款,从而带来更为优化的个人体验.让网站所有者易于对不同版本的 ...
- Vijos1910 NOIP2014提高组 Day2T3 解方程 其他
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - Vijos1910 题意概括 已知多项式方程: a0+a1x+a2x2+...+anxn=0 求这个方程在[1 ...
- 023 Spark Scheduler(调度)
1.官网 http://spark.apache.org/docs/1.6.1/job-scheduling.html http://spark.apache.org/docs/1.6.1/confi ...
- 求链表的倒数第m个元素
法一: 首先遍历一遍单链表,求出整个单链表的长度n,然后将倒数第m个,转换为正数第n-m+1个,接下去遍历一次就可以得到结果. 不过这种方法需要对链表进行两次遍历,第一次遍历用于求解单链表的长度,第二 ...
- 今天刚学到truncate和delete的区别,做个总结吧
truncate table : 删除内容,释放空间(表中数据会被删除,但不会进入oracle回收站,直接删除),不删除定义 delete table : 删除内容,不释放空间(表中数据虽被删除,但是 ...
- 推荐一个spring cloud 学习路线,绝对合理化
最近没有时间所有没用给大家更新spring cloud 系列学习,在这先给大家奉献上我学习spring cloud 的路线 当然第一步先学习springboot然后: spring cloud eur ...
- Oracle - Dbms Output window
Ensure that you have your Dbms Output window open through the view option in the menubar. Click on t ...
- 利用Solr服务建立的站内搜索雏形
最近看完nutch后总感觉像好好捯饬下solr,上次看到老大给我展现了下站内搜索我便久久不能忘怀.总觉着之前搭建的nutch配上solr还是有点呆板,在nutch爬取的时候就建立索引到solr服务下, ...
- Scratch儿童项目式编程--接球游戏 Scratch children program programming - catching a ball
Scratch儿童项目式编程--接球游戏 Scratch children program programming - catching a ball 作者:韩梦飞沙 Author:han_meng_ ...
- spring源码分析系列 (5) spring BeanFactoryPostProcessor拓展类PropertyPlaceholderConfigurer、PropertySourcesPlaceholderConfigurer解析
更多文章点击--spring源码分析系列 主要分析内容: 1.拓展类简述: 拓展类使用demo和自定义替换符号 2.继承图UML解析和源码分析 (源码基于spring 5.1.3.RELEASE分析) ...