【做题】51NOD1753 相似子串——哈希
题意:两个字符串相似定义为:
1.两个字符串长度相等
2.两个字符串对应位置上至多有一个位置所对应的字符不相同
给定一个字符串\(s\),\(T\)次询问两个子串在给定的规则下是否相似。给定的规则指每次给出一些等价关系,如‘a'=’b',‘b'=’c'(具有传递性)\(|s|,T \leq 3 \times 10^5\)
题目中的每次询问相当于把一些字符合并成了一些联通块,每个联通块内的字符视为相同。这用并查集合并。
首先考虑询问相等而非相似怎么做。直接的子串对比我们可以直接比较哈希值,但这里要支持合并字符。因此,考虑每个字符对哈希值的贡献。把它除以这个字符的权值后,就相当于这个字符在子串中的出现位置的哈希值,在每个联通块内,这是可以直接相加的。因此,我们只要比较两个子串每个联通块的出现位置是否相同,就能判断是否相等。
再考虑恰好有一位不同的情况。在这种情况下,只有两个联通块在两个子串中出现位置不同,且其哈希值的差值为哈希底数的若干次幂及其相反数。这是可以\(O(1)\)判断的。
时间复杂度\(O((|s| + T )\times26)\)。
#include <bits/stdc++.h>
using namespace std;
const int N = 300010, BAS = 233, MOD = 998244353;
char s[N],t[10];
int has[26][N],n,m,pw[N],uni[30],val[2][30],rec[2],cnt;
int getfa(int pos) {
return pos == uni[pos] ? pos : uni[pos] = getfa(uni[pos]);
}
unordered_map<int,int> mp;
int gethas(int k,int l,int r) {
return ((has[k][r] - 1ll * has[k][l-1] * pw[r-l+1] % MOD) + MOD) % MOD;
}
void init() {
for (int i = 1 ; i <= 26 ; ++ i)
uni[i] = i;
memset(val,0,sizeof val);
cnt = 0;
}
void solve() {
int k,l1,r1,l2,r2,x,y;
scanf("%d%d%d%d%d",&k,&l1,&r1,&l2,&r2);
init();
for (int i = 1 ; i <= k ; ++ i) {
scanf("%s",t+1);
x = t[1] - 'a' + 1;
y = t[2] - 'a' + 1;
x = getfa(x);
y = getfa(y);
if (x != y) uni[x] = y;
}
for (int i = 0 ; i < 26 ; ++ i)
(val[0][getfa(i+1)] += gethas(i,l1,r1)) %= MOD;
for (int i = 0 ; i < 26 ; ++ i)
(val[1][getfa(i+1)] += gethas(i,l2,r2)) %= MOD;
int key = 0;
for (int i = 1 ; i <= 26 ; ++ i)
key += (val[0][i] != val[1][i]);
if (!key) return (void) (puts("YES"));
if (key > 2) return (void) (puts("NO"));
for (int i = 1 ; i <= 26 ; ++ i) {
if (val[1][i] != val[0][i]) {
x = val[1][i] - val[0][i];
x = (x % MOD + MOD) % MOD;
if (!mp.count((x))) return (void) (puts("NO"));
rec[cnt++] = mp[x];
}
}
if (rec[0] == -rec[1]) puts("YES");
else puts("NO");
}
int main() {
scanf("%s",s+1);
n = strlen(s+1);
for (int i = 0 ; i < 26 ; ++ i) {
for (int j = 1 ; j <= n ; ++ j)
has[i][j] = (1ll * has[i][j-1] * BAS + (s[j] == 'a' + i)) % MOD;
}
pw[0] = 1;
for (int i = 1 ; i <= n ; ++ i)
pw[i] = 1ll * pw[i-1] * BAS % MOD;
for (int i = 0 ; i <= n ; ++ i)
mp[pw[i]] = i + 1, mp[MOD - pw[i]] = -i - 1;
scanf("%d",&m);
for (int i = 1 ; i <= m ; ++ i)
solve();
return 0;
}
小结:解题关键就在于拆分每个字符的贡献,以实现合并。这利用了哈希值容易拆分合并的性质。
【做题】51NOD1753 相似子串——哈希的更多相关文章
- noip做题记录+挑战一句话题解?
因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...
- POI做题记录
嘿嘿,偷学一波! 由于博主做的题比较少,所以没按年份整理,直接按照做题时间放上来了. 2020年9月20日 [POI2013]LUK-Triumphal arch 给你一颗\(n\)个点的树(\(n\ ...
- SDOI2016 R1做题笔记
SDOI2016 R1做题笔记 经过很久很久的时间,shzr终于做完了SDOI2016一轮的题目. 其实没想到竟然是2016年的题目先做完,因为14年的六个题很早就做了四个了,但是后两个有点开不动.. ...
- 【做题】BZOJ2342 双倍回文——马拉车&并查集
题意:有一个长度为\(n\)的字符串,求它最长的子串\(s\)满足\(s\)是长度为4的倍数的回文串,且它的前半部分和后半部分都是回文串. \(n \leq 5 \times 10^5\) 首先,显然 ...
- Sam做题记录
Sam做题记录 Hihocoder 后缀自动机二·重复旋律5 求一个串中本质不同的子串数 显然,答案是 \(\sum len[i]-len[fa[i]]\) Hihocoder 后缀自动机三·重复旋律 ...
- 退役III次后做题记录(扯淡)
退役III次后做题记录(扯淡) CF607E Cross Sum 计算几何屎题 直接二分一下,算出每条线的位置然后算 注意相对位置这个不能先搞出坐标,直接算角度就行了,不然会卡精度/px flag:计 ...
- 题解 [51nod1753] 相似子串
题解 [51nod1753] 相似子串 题面 解析 先考虑相等的时候怎么办, 我们考虑求出每个字母的贡献,这样字母相等的问题就可以用并查集来解决. 具体来说,我们先对于每个字母,把S中等于它的标为1, ...
- NOIP2016考前做题(口胡)记录
NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...
- SAM 做题笔记(各种技巧,持续更新,SA)
SAM 感性瞎扯. 这里是 SAM 做题笔记. 本来是在一篇随笔里面,然后 Latex 太多加载不过来就分成了两篇. 标 * 的是推荐一做的题目. trick 是我总结的技巧. I. P3804 [模 ...
随机推荐
- centos6.5安装无线网卡驱动并配置wifi
1.驱动下载地址: RTL8188无线网卡驱动下载 链接:https://pan.baidu.com/s/1ms-EbQCDxa76jPhYUPmr9Q 密码:r2vu 2.安装步骤: [root@c ...
- dp入门 石子相邻合并 详细带图讲解
题目: 有N堆石子,现要将石子有序的合并成一堆,规定如下: 1.每次只能移动相邻的2堆石子合并 2.合并花费为新合成的一堆石子的数量. 求将这N堆石子合并成一堆的总花费最小(或最大). 样例: 输入 ...
- Mysql版本java问题(com.mysql.cj.jdbc.Driver和com.mysql.jdbc.Driver)
老版本com.mysql.jdbc.Driver已弃用 String url1 = "jabc:mysql://127.0.0.1:3306/test"; String url1 ...
- Python全栈-day1-day2-计算机基础
计算机基础 1.编程语言 语言即事物之间沟通的介质,编程语言即程序员与计算机沟通的介质.程序员通过编写计算机程序使得计算机能够按照人预先的期望执行相应的动作,从而达到在某种程度上解放人和实现人类难以实 ...
- pyinstaller将python脚本生成exe
一.下载pyinstaller 二.生成exe 下载pyinstaller 1.在C:\python27\Scripts目录下打开cmd界面,执行命令:pip install PyInstaller ...
- hdu3511 圆的扫描线
http://blog.csdn.net/firenet1/article/details/47041145 #include <iostream> #include <algori ...
- 转自大神的KM想法
我第一次理解KM算法看到大神的讲解不胜感激这km挺神奇的接下来就见识一下这个大牛的吧 转自 http://blog.csdn.net/wuxinxiaohuangdou/article/details ...
- Java多线程-----线程安全及解决机制
1.什么是线程安全问题? 从某个线程开始访问到访问结束的整个过程,如果有一个访问对象被其他线程修改,那么对于当前线程而言就发生了线程安全问题: 如果在整个访问过程中,无一对象被其他线程修改,就是线程安 ...
- Apache+Tomcat+Memcached实现会话保持
会话保持的三种方式 Session sticky会话绑定:通过在前端调度器的配置中实现统一session发送至同一后发端服务器 Session cluster会话集群:通过配置Tomcat保持所有To ...
- HttpServletRequestWrapper
1). why 需要改变从 Servlet 容器 (可能是任何的 Servlet 容器)中传入的 HttpServletRequest 对象的某个行为,该怎么办? 一. 继承 HttpServletR ...