Description

We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
 
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
 
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
 
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

Input

In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

Output

You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 109.

Sample Input

5
4 1 5 2 3

Sample Output

6

启发博客:http://blog.csdn.net/tc_to_top/article/details/48132609

题目大意:求将一个排列p(n)还原成En(1,2,3,4...)的最小置换次数

题目分析:计算置换中每个循环节内元素的个数,答案就是这个数的最小公倍数,很好理解,假设某个循环节包含3个元素,则这个循环节还原需要3次,另一个循环节包含2个元素,需要2次置换还原,因此我要让全部序列都还原,只需要取它们的最小公倍数即可

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std; int a[];
bool vis[];
long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long lcm(long long b,long long c)//计算最小公倍数
{
return b * c/ gcd(b, c);
} int main()
{
int n,i,tmp,j;
long long res;
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
scanf("%d",&a[i]);
memset(vis,false,sizeof(vis));
res=;
for(i=;i<=n;i++)
{
if(!vis[i])
{
j=i;
tmp=;
while(!vis[j])
{
vis[j]=true;
tmp++;
j=a[j];
}
}
res=lcm(res,(long long)tmp);
}
printf("%lld\n",res);
}
return ;
}

												

POJ 2369 Permutations(置换群概念题)的更多相关文章

  1. poj 2369 Permutations - 数论

    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...

  2. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  3. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  4. poj 2369 Permutations 更换水称号

    寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...

  5. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  6. POJ 2369 Permutations (置换的秩P^k = I)

    题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...

  7. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  8. POJ 1488 Tex Quotes --- 水题

    POJ 1488 题目大意:给定一篇文章,将它的左引号转成 ``(1的左边),右引号转成 ''(两个 ' ) 解题思路:水题,设置一个bool变量标记是左引号还是右引号即可 /* POJ 1488 T ...

  9. poj 2369(置换群)

    Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3041   Accepted: 1641 Desc ...

随机推荐

  1. 配置ssh免密登录

    安装ssh sudo apt-get install ssh 产生密钥:ssh-keygen -t rsa -P "" -f ~/.ssh/id_rsa (rsa为ssh的加密方式 ...

  2. ORACLE SQL 函数 INITCAP()

    INITCAP() 假设c1为一字符串.函数INITCAP()是将每个单词的第一个字母大写,其它字母变为小写返回. 单词由空格,控制字符,标点符号等非字母符号限制. select initcap('h ...

  3. 如何使a标签打开新页面并阻止刷新当前页面

    错误: HTML中,使用href属性时,当前页面和新页面均跳转到URL指定的页面,即当前页面也刷新: <li id='goToBack'><a href='**.action' ta ...

  4. ECharts 报表事件联动系列三:柱状图,饼状图实现联动

    源码如下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...

  5. Auto Encoder用于异常检测

    对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都 ...

  6. 微信小程序自动定位,通过百度地图根据经纬度获取该地点所在城市信息

    微信小程序获得经纬度 var that = this wx.getLocation({ type: 'wgs84', success(res) { console.log(res) that.setD ...

  7. shiro过滤器解释类

    anon -- org.apache.shiro.web.filter.authc.AnonymousFilter authc -- org.apache.shiro.web.filter.authc ...

  8. etymon word forget acid acrid acri shap acu=sour act out 1

    1● acid   2● sharp 3● acri 4● acrid acu=sour 酸的,尖酸的     1● act = to do drive   行动    

  9. 在Ubuntu 12.04 上为Virtualbox 启用USB 设备支持

    在Ubuntu 12.04 上为Virtualbox 启用USB 设备支持  http://www.cnblogs.com/ericsun/archive/2013/06/10/3130679.htm ...

  10. java 一些容易忽视的小点-类和对象

    构造器 通过new关键字调用 构造器虽然有返回值,但是不能定义返回值类型(返回值的类型肯定是本类),不能在构造器里使用return返回某个值. 构造器是有权限的,也就是可以添加public,也可以添加 ...