Description

We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
 
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
 
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
 
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

Input

In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

Output

You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 109.

Sample Input

5
4 1 5 2 3

Sample Output

6

启发博客:http://blog.csdn.net/tc_to_top/article/details/48132609

题目大意:求将一个排列p(n)还原成En(1,2,3,4...)的最小置换次数

题目分析:计算置换中每个循环节内元素的个数,答案就是这个数的最小公倍数,很好理解,假设某个循环节包含3个元素,则这个循环节还原需要3次,另一个循环节包含2个元素,需要2次置换还原,因此我要让全部序列都还原,只需要取它们的最小公倍数即可

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std; int a[];
bool vis[];
long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long lcm(long long b,long long c)//计算最小公倍数
{
return b * c/ gcd(b, c);
} int main()
{
int n,i,tmp,j;
long long res;
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
scanf("%d",&a[i]);
memset(vis,false,sizeof(vis));
res=;
for(i=;i<=n;i++)
{
if(!vis[i])
{
j=i;
tmp=;
while(!vis[j])
{
vis[j]=true;
tmp++;
j=a[j];
}
}
res=lcm(res,(long long)tmp);
}
printf("%lld\n",res);
}
return ;
}

												

POJ 2369 Permutations(置换群概念题)的更多相关文章

  1. poj 2369 Permutations - 数论

    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...

  2. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  3. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  4. poj 2369 Permutations 更换水称号

    寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...

  5. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  6. POJ 2369 Permutations (置换的秩P^k = I)

    题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...

  7. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  8. POJ 1488 Tex Quotes --- 水题

    POJ 1488 题目大意:给定一篇文章,将它的左引号转成 ``(1的左边),右引号转成 ''(两个 ' ) 解题思路:水题,设置一个bool变量标记是左引号还是右引号即可 /* POJ 1488 T ...

  9. poj 2369(置换群)

    Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3041   Accepted: 1641 Desc ...

随机推荐

  1. git回退代码到某次commit

    回退命令: $ git reset --hard HEAD^ 回退到上个版本 $ git reset --hard HEAD~3 回退到前3次提交之前,以此类推,回退到n次提交之前 $ git res ...

  2. 把springboot的项目打包运行指南

    受到传统mvc模式的开发影响,多数人都会想到把springboot项目打成war包在服务器容器里运行,笔者试过很多种方法打成war包部署tomcat上运行.运行成功但是怎么也访问不了,一直报404的错 ...

  3. javaee登录界面

    首先在此之前我们应该正确安装数据库,以及eclipse(javaee)文件包. 1.首先在javaee中建立新的项目 2.右键点击WebContent-New-JSP File,新建jsp(动态)文件 ...

  4. CRM 价格批导2<上一个太多冗余>

    INCLUDE:LCRM_MKTPL_COND_IFF39 *--------------------------------------------------------------------- ...

  5. php分页、正则验证

    //原装分页<?phpheader("Content-type:text/html;Charset=utf8"); $link=mysqli_connect("lo ...

  6. html中传递信息

    <div class="card" data-username="ArgenBarbie"> </div> JS: var userna ...

  7. Linux修改用户密码有效期

    linux默认用户的密码是永不过期的,但是出于安全考虑在企业环境中一般会要求设置过期日期:但有时要求90天就过期,在这种严柯条件下我们有可能想给某个或某些用户开设后门,延长其密码有效期. 一.用户密码 ...

  8. JQuery的选择器的简单介绍

    1.jquery工厂函数 介绍Jquery选择器前,先来说一下JQuery的工厂函数"$",在JQuery中,无论使用哪种类型选择符都要从一个“$”符号和一对“()”开始. 在“( ...

  9. matlab global persistent变量

    global变量是全局的,在使用global变量的函数里需要用global声明所使用的变量. persistent类似global,不过仅对当前函数有作用,这样避免了外面的影响.当这个函数被clear ...

  10. [IOS微信] 查看微信原始数据(含沙盒中的数据)

    1.下载PP助手,将苹果手机连接到电脑上, 2.备份数据 备份还原——备份数据——全新备份 3.导出数据 备份还原——还原数据,在右边的列表中找到备份记录,点击“查看”, 在弹出窗口的右侧,找到“Ap ...