Description

We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
 
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
 
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
 
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."

Input

In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).

Output

You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 109.

Sample Input

5
4 1 5 2 3

Sample Output

6

启发博客:http://blog.csdn.net/tc_to_top/article/details/48132609

题目大意:求将一个排列p(n)还原成En(1,2,3,4...)的最小置换次数

题目分析:计算置换中每个循环节内元素的个数,答案就是这个数的最小公倍数,很好理解,假设某个循环节包含3个元素,则这个循环节还原需要3次,另一个循环节包含2个元素,需要2次置换还原,因此我要让全部序列都还原,只需要取它们的最小公倍数即可

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<string.h>
using namespace std; int a[];
bool vis[];
long long gcd(long long b,long long c)//计算最大公约数
{
return c==?b:gcd(c,b%c);
} long long lcm(long long b,long long c)//计算最小公倍数
{
return b * c/ gcd(b, c);
} int main()
{
int n,i,tmp,j;
long long res;
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
scanf("%d",&a[i]);
memset(vis,false,sizeof(vis));
res=;
for(i=;i<=n;i++)
{
if(!vis[i])
{
j=i;
tmp=;
while(!vis[j])
{
vis[j]=true;
tmp++;
j=a[j];
}
}
res=lcm(res,(long long)tmp);
}
printf("%lld\n",res);
}
return ;
}

												

POJ 2369 Permutations(置换群概念题)的更多相关文章

  1. poj 2369 Permutations - 数论

    We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Les ...

  2. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  3. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  4. poj 2369 Permutations 更换水称号

    寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...

  5. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  6. POJ 2369 Permutations (置换的秩P^k = I)

    题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...

  7. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  8. POJ 1488 Tex Quotes --- 水题

    POJ 1488 题目大意:给定一篇文章,将它的左引号转成 ``(1的左边),右引号转成 ''(两个 ' ) 解题思路:水题,设置一个bool变量标记是左引号还是右引号即可 /* POJ 1488 T ...

  9. poj 2369(置换群)

    Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3041   Accepted: 1641 Desc ...

随机推荐

  1. hdu1569-方格取数-二分图网络流

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  2. 通过cassandra-cli客户端了解cassandra的内部数据结构

    和cassandra数据库交互的方式有两种,一种是通过类似于cassandra-cli命令的thrift api,或者通过cassandra提供的cql(cassandra query lanugag ...

  3. python 怎样使用单个反斜杠\

    path2 = "c:\\windows\\temp\\readme.txt" path2:用一个"\"取消第二个"\"的特殊转义作用,即为 ...

  4. IntelliJ Idea 快捷键列表

    最重要:1Ctrl+Alt+Shift+T:查找类2重构3提取父类 Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift ...

  5. [转载] C++ STL中判断list为空,size()==0和empty()有什么区别

    关于两个的区别,首先size()==0为bool表达式,empty()为函数调用,这一点很明显.查看源代码, bool empty() const { return _M_node->_M_ne ...

  6. 蓝桥杯—BASIC-21 sine之舞(递归递推)

    题目:最近FJ为他的奶牛们开设了数学分析课,FJ知道若要学好这门课,必须有一个好的三角函数,所以他准备和奶牛们做一个“Sine之舞”的游戏,寓教于乐,提高奶牛们的计算能力. 不妨设 An=sin(1– ...

  7. 通过改变unity中物体的alpha值实现若隐若现的效果

    RawImage logo = mainLogo.transform.FindChild("back/headBack/Logo").GetComponent<RawImag ...

  8. python 学习笔记 字符串和编码

    字符编码:因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理,最早的计算机在设计时采用8个比特(bit)作为一个字节 (byte),所以,一个字节能表示的最大的整数是255(二进 ...

  9. day24-python操作数据库四

    #!/usr/bin/env python # -*- coding:utf-8 -*- # @time: 2017/11/23 23:10 # Author: caicai # @File: dem ...

  10. inode占用100%时硬盘无法写入文件故障处理

    故障现象: 分区无法写入文件. 故障分析: 执行df -h命令发现空间占用不到50%,执行df -hi,发现某分区IUse%值为99%,说明innode已经用完,应该是某些目录下存在大量的小文件导致. ...