http://acm.hdu.edu.cn/showproblem.php?pid=1069

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18668    Accepted Submission(s): 9934

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题目大意:给N种类型的长方体【每种任意多个】,摆放时要求上面的那个长方体的长和宽要严格小于下面的长和宽,求摆放方案中最高有多高。
题目分析:首先每个长方体有三种摆放的方式,而每个摆放方式都有摆与不摆两种方案,这就类似于最长上升子序列问题中某个数字取或者不取使用动态规划做,即DP【I】表示在第I种方案的木块被选择的情况下的最高高度
注意:为了能正确地进行迭代更新,应该先将木块进行一次排序,按底面积的大小排序,然后从面积大的 I  开始更新迭代
【这点很重要!因为只有底层得到正确的最大的值,后面的更新才有意义】

【HDOJ1069】【动态规划】的更多相关文章

  1. HDOJ-1069(动态规划+排序+嵌套矩形问题)

    Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  6. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  7. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  8. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. spark使用正则表达式读入多个文件

    String dir = "s3a://example/";String currentDir = dir + "{1[5-9],2[01]}/*.txt";J ...

  2. Linux command automake

    Linux command automake [Purpose]        Learning linux command automake for generate Makefile.in for ...

  3. HTML编辑笔记4

    1.CSS(层叠样式表) 2.CSS语法 选择器{ 属性名1:属性值1: 属性名2:属性值2: } 3.引用CSS的三种方式 第一种:行内样式 例:<a style="color:re ...

  4. java⑦

    1. 逻辑运算符 * 01. && 短路与 并且的关系 * 表达式1 && 表达式2 * 001.如果 表达式1为false,则不执行 表达式2 * 002.表达式1, ...

  5. 深入理解java虚拟机---虚拟机工具jinfo(十五)

    作用: 实时查看和调整虚拟机参数. jinfo 是jdk自带的一个工具,它可以用来查看正在运行的java应用程序的扩展参数(JVM中-X标示的参数):甚至支持在运行时修改部分参数. 1.通过以下的命令 ...

  6. Java线程的三种方式

    创建线程有三种方式: 1.继承Thread类 2.实现Runnable接口 3.使用Callable和Future创建线程 三种方式详解如下: ---------------------------- ...

  7. python的条件判断

    条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...

  8. Linux文件系统命令 umask

    命令:umask 功能:指定创建文件或者文件夹的时,默认的权限设置 用法:umask -S:以rwx的方式查看创建文件的权限 umask -p:以补位的方式查看文件的权限,显示的是补位的十进制. 另外 ...

  9. Linux文件系统命令 split

    命令:split 功能:将文件按照一定的规则进行切割 用法:-l 表示按照行数进行切割. -b 表示按照字节进行切割,切割后的文件名为自己定义的文件名+aa,ab,ac类似的后缀. eg: 按照行数进 ...

  10. 九、编写led驱动

    led.c #include <linux/init.h> #include <linux/module.h> #include <linux/cdev.h> #i ...