1.向量

向量是指可以加总(以生成新的向量),可以乘以标量(即数字),也可以生成新的向量的对象。

向量是有限维空间的点。

1.1向量例子

如果你有很多人的身高、体重、年龄数据,就可以把数据记为三维向量(height, weight, age)。

如果你教的一个班有四门考试,就可以把学生成绩记为四维向量(exam1, exam2, exam3, exam4)。

1.2向量加法与减法

向量以分量方式(componentwise)做运算。这意味着,如果两个向量v 和w 长度相同,那它们的和就是一个新的向量,其中向量的第一个元素等于v[0] + w[0],第二个元素等于v[1] + w[1],以此类推。(如果两个向量长度不同,则不能相加。)

  • 向量加法函数
def vector_add(v, w):
retrun [v_i + w_i for v_i, w_i in zip(v,w)]
  • 向量减法函数
def vector_add(v, w):
retrun [v_i - w_i for v_i, w_i in zip(v,w)]
  • 多个向量的加法运算
def vector_sum(*vectors):
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result, vector)
return result #方法2
import functools import reduce
def vector_sum(*vectors):
return reduce(vector_add, vectors)

1.3向量的乘法

  • 标量与向量的乘法
def scalar_multiply(c,v):
return [c * v_i for v_i in v]
  • 系列向量的均值
def vector_mean(*vectors):
n = len(vectors)
return scalar_multiply(1/n, vector_sum(vectors))
  • 点乘
def dot(v,w):
return sum(v_i * w_i for v_i, w_i in zip(v,w))
  • 向量的平方和
def sum_of_squares(v)
return dot(v,v)
  • 向量的长度
import math
def magnitude(v)
return math.sqrt(sum_of_squares(v))
  • 两点间的距离

def squared_distance(v,w):
return sum_of_squares(vector_subtract(v,w)) def distance(v,w):
return math.squrt(squared_distance(v,w))
# return magnitude(vector_subtract(v,w))

2.矩阵

矩阵是一个二维的数据集合。我们将矩阵表示为列表的列表,每个内部列表的大小都一样,表示矩阵的一行。如果A是一个矩阵,那么A[i][j]就表示第i行第j列的元素。按照数学表达的惯例,我们通常用大写字母表示矩阵。

2.1矩阵例子

2.2矩阵的形状

def shape(A):
num_rows = len(A)
num_cols = len(A[0] if A else 0)
return num_rows, num_cols

如果一个矩阵有n 行k 列,则可以记为n×k 矩阵。我们可以把这个n×k 矩阵的每一行都当作一个长度为k 的向量,把每一列都当作一个长度为n 的向量:

2.3矩阵的创建函数

def make_matrix(num_rows, num_cols, entry_fn):
return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)] def is_diagonal(i, j):
return 1 if i == j else 0 make_matrix(5, 5, is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

参考《数据科学入门》

线性代数与Python的更多相关文章

  1. [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同

    转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...

  2. 数据科学速查手册(包括机器学习,概率,微积分,线性代数,python,pandas,numpy,数据可视化,SQL,大数据等方向)

    介绍:https://redstonewill.com/2372/ 项目网址:https://github.com/FavioVazquez/ds-cheatsheets

  3. 关于python深度学习网站

      大数据文摘作品,转载要求见文末 编译团队|姚佳灵 裴迅 简介 ▼ 深度学习,是人工智能领域的一个突出的话题,被众人关注已经有相当长的一段时间了.它备受关注是因为在计算机视觉(Computer Vi ...

  4. 2018年Fintech金融科技关键词和入行互金从业必懂知识

    2018年过去大半,诸多关键词进入眼帘: 5G,消费降级,数据裸奔,新零售,AI,物联网,云计算,合规监管,风控,割韭菜,区块链,生物识别,国民空闲时间以及金融科技. 这些词充斥着我们的生活和时间,而 ...

  5. 利用Python学习线性代数 -- 1.1 线性方程组

    利用Python学习线性代数 -- 1.1 线性方程组 本节实现的主要功能函数,在源码文件linear_system中,后续章节将作为基本功能调用. 线性方程 线性方程组由一个或多个线性方程组成,如 ...

  6. Python与线性代数基本概念

    在Python中使用Numpy创建向量: x = np.array([1, 2, 3, 4]) 创建3 x 3矩阵 B = np.array([[1, 2],[3, 4],[5, 6]]) Shape ...

  7. Python之Numpy:线性代数/矩阵运算

    当你知道工具的用处,理论与工具如何结合的时候,通常会加速咱们对两者的学习效率. 零 numpy 那么,Numpy是什么? NumPy(Numerical Python) 是 Python 语言的一个扩 ...

  8. Python 矩阵(线性代数)

    Python 矩阵(线性代数) 这里有一份新手友好的线性代数笔记,是和深度学习花书配套,还被Ian Goodfellow老师翻了牌. 笔记来自巴黎高等师范学院的博士生Hadrien Jean,是针对& ...

  9. PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)

    前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...

随机推荐

  1. STM32F103X datasheet学习笔记---DMA

    1.前言 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输. 无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的资源来做其他操作. 两个DMA控制器 ...

  2. ubuntu 删除自带软件的方法

    $ sudo dpkg -l | grep -i "need2del" $ sudo dpkg -P 或者: $ sudo apt-get --purge remove need2 ...

  3. 简单理解Zookeeper的Leader选举【转】

    Leader选举是保证分布式数据一致性的关键所在.Leader选举分为Zookeeper集群初始化启动时选举和Zookeeper集群运行期间Leader重新选举两种情况.在讲解Leader选举前先了解 ...

  4. 量化投资与Python之NumPy

      数组计算 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.NumPy的主要功能:ndarray,一个多维数组结构,高效且节省空间无需循环对整组数据进行快速运算的 ...

  5. 如何用jQuery获得select的值

    如何用jQuery获得select的值,在网上找了看了一下,下面将总结一下: 1.获取第一个option的值        $('#test option:first').val(); 2.最后一个o ...

  6. WallPaper

    LiveWallPaper 动态壁纸是从Android2.1就开始带有的一个新的特性.它让我们能够将本来毫无生气的静态的手机屏幕背景替换成 从 随着音乐的活力和脉动而跳跃的声线 到 手指抚过能激起阵阵 ...

  7. 转:vue+element实现树形组件

    项目中需要用到树形组件,在网上发现一个用vue+element实现的树形组件,现在记录下: demo地址:https://github.com/wilsonIs/vue-treeSelect

  8. Android 截屏与 WebView 长图分享经验总结

    最近在做新业务需求的同时,我们在 Android 上遇到了一些之前没有碰到过的问题,截屏分享. WebView 生成长图以及长图在各个分享渠道分享时图片模糊甚至分享失败等问题,在这过程中踩了很多坑,到 ...

  9. OCM_第九天课程:Section4—》OCM课程环境搭建

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  10. LeetCode(38): 报数

    Easy! 题目描述: 报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作  &qu ...