CompareTo 基于的排序算法
CompareTo 基于的排序算法(高级排序)
这个是今天学习MapReduce时发现的,自定义类后实现了WritableComparable<>接口后实现了接口中的compareTo方法,返回>1或者<1则会自动进行排序的方法。
然后特别好奇,查了查,学习下做一个总结。
首先说明 实现CompareTo方法的是使用了Collections.sort()和Arrays.sort()底层得算法,是timsort算法,插入排序和归并排序的高级合并 .
详情:https://blog.csdn.net/yangzhongblog/article/details/8184707
而这2个方法在底层实现时,使用到了object1.compareTo(object2)这种方法进行判断谁大谁小,从而调整数组,最终给你返回有序的集合,两个方法的排序算法实现有归并排序和快速排序。
详细将一下:归并排序是属于递归中的一种,而快速排序是是属于高级排序的,与其同时的 还有希尔排序,划分,基数排序。但最常用的还是快速排序。这里详解一下技术排序,归并排序我则在记录递归是将其一并总结。所以我来详解一下这个高级排序
高级排序
希尔排序:
n-增量排序:通过加大插入排序中的元素之间的间隔。n:是指元素之间的间隔几个元素
我们来看一下主要的 4- 增量排序的放的排序过程。所有元素在离它最终的有序序列中的位置相差不到两个单元,做到了数据的基本有序,希尔则是做到了数据的基本有序,通过创建这种交错的内部有序的数据项集合,把完成排序所需的工作降调到最小
那么我们来研究一下这个间隔,这个间隔到底是使用多少为合适,可以将希尔的作用发挥到及至。以及间隔的选用。
间隔是通过数组得到大小进行变化的。比如1000个数据,间隔则为364-->121-->40-->13-->4-->1 这个间隔序列是通过递归计算出来的
谈希尔适合的排序环境:
这里是我的个人见解,如有更好的见解,欢迎一起讨论!!!
希尔排序适合中量数据的基本有序排序,少量数据使用插入排序进行更为稳定。
走开走开~~代码来了
package AdvancedRanking.ShellSort;
public class ArraySh {
//数组
private long[] theArray;
//数组长度
private int nElems;
public ArraySh(int max) {
theArray = new long[max];
nElems = 0;
}
public void insert(long value) {
theArray[nElems] = value;
nElems++;
}
public void display() {
System.out.print("A=");
for (int j = 0; j < nElems; j++) {
System.out.print(theArray[j] + " ");
}
System.out.println("");
}
public void shellSort() {
int inner, outer;
long temp;
//初始时元素之间的间隔
int h = 1;
while (h <= nElems / 3) {
h = h * 3 + 1;
}
while (h > 0) {
for (outer = h; outer < nElems; outer++) {
temp = theArray[outer];
inner = outer;
while (inner > h - 1 && theArray[inner - h] >= temp) {
theArray[inner] = theArray[inner - h];
System.out.println(theArray[inner]);
inner -= h;
}
theArray[inner] = temp;
}
//结束时元素之间的间隔
h = (h - 1) / 3;
}
}
public static void main(String[] args) {
int maxSize = 10;
ArraySh arr = new ArraySh(maxSize);
for (int j = 0; j < maxSize; j++) {
long n = (int) (Math.random() * 99);
arr.insert(n);
}
arr.display();
arr.shellSort();
arr.display();
}
}
二.划分
package AdvancedRanking.PartitionSort;
public class ArrayPar {
private long[] theArray;
private int nElems;
public ArrayPar(int max) {
theArray = new long[max];
nElems = 0;
}
public void insert(long value) {
theArray[nElems] = value;
nElems++;
}
public int size() {
return nElems;
}
public void display() {
System.out.print("A=");
for (int j = 0; j < nElems; j++) {
System.out.print(theArray[j] + " ");
}
System.out.println("");
}
public int partitionIt(int left, int right, long pivot) {
int leftPtr = left - 1;
int rightPtr = right + 1;
while (true) {
//最大得
while (leftPtr < right && theArray[++leftPtr] > pivot) ;
//最小的
while (rightPtr > left && theArray[--rightPtr] > pivot) ;
if (leftPtr > rightPtr) {
break;
} else {
swap(leftPtr, rightPtr);
}
}
return leftPtr;
}
public void swap(int dex1, int dex2) {
long temp;
temp = theArray[dex1];
theArray[dex1] = theArray[dex2];
theArray[dex2] = temp;
}
public static void main(String[] args) {
int maxSize = 10;
ArrayPar arr = new ArrayPar(maxSize);
for (int j = 0; j < maxSize; j++) {
long n = (int) (Math.random() * 199);
arr.insert(n);
}
arr.display();
long piovt = 99;
System.out.print("Piovt is " + piovt);
int size = arr.size();
int partDex = arr.partitionIt(0, size - 1, piovt);
System.out.println(", Partition is at index " + partDex);
arr.display();
}
}
划分算法是由两个指针开始工作的,两个指针分别指向数据的两头leftPtr初始化是在第一个数据项的左边的一位,rightPtr是在最后一个数据项的右边一位。他们分别要-1 +1
//找小于于piovt
while (leftPtr < right && theArray[++leftPtr] > pivot) ;
//找小于pivot
while (rightPtr > left && theArray[--rightPtr] > pivot) ;
划分算法运行时间为O(N),他其中的piovt枢纽,根据枢纽来移动指针和交换数据位置,虽然交换次数少,但是比较次数多。100个数大约交换25次,102次的比较。
快速排序:
CompareTo 基于的排序算法的更多相关文章
- Arrays.Sort()中的那些排序算法
本文基于JDK 1.8.0_211撰写,基于java.util.Arrays.sort()方法浅谈目前Java所用到的排序算法,仅个人见解和笔记,若有问题欢迎指证,着重介绍其中的TimSort排序,其 ...
- 常见排序算法基于JS的实现
一:冒泡排序 1. 原理 a. 从头开始比较相邻的两个待排序元素,如果前面元素大于后面元素,就将二个元素位置互换 b. 这样对序列的第0个元素到n-1个元素进行一次遍历后,最大的一个元素就“沉”到序列 ...
- 第32讲:List的基本操作实战与基于模式匹配的List排序算法实现
今天来学习一下list的基本操作及基于模式匹配的排序操作 让我们从代码出发 val bigData = List("hadoop","spark") val d ...
- 排序算法总结(基于Java实现)
前言 下面会讲到一些简单的排序算法(均基于java实现),并给出实现和效率分析. 使用的基类如下: 注意:抽象函数应为public的,我就不改代码了 public abstract class Sor ...
- 转载~基于比较的排序算法的最优下界为什么是O(nlogn)
基于比较的排序算法的最优下界为什么是O(nlogn) 发表于2013/12/21 16:15:50 1024人阅读 分类: Algorithm 1.决策二叉树 回答这个问题之前我们先来玩一个猜数字的 ...
- 基于python的七种经典排序算法
参考书目:<大话数据结构> 一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. ...
- 八大排序算法---基于python
本文节选自:http://python.jobbole.com/82270/ 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 ...
- 温习排序算法(基于C指针)
以前学过的数据结构课,貌似已经忘得一干二净了,偶然又翻起,书中最后一章详细介绍了7种排序算法,现在对其中4种做个总结.(为啥只总结4种,当然是因为偷懒,只想总结简单又常用的!) 先贴一张排序分类图: ...
- 基于python的七种经典排序算法(转)
一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性:经过某种排序后,如果两个 ...
随机推荐
- 2、iptables基本应用
iptables:规则管理工具 添加.修改.删除.显示等: 规则和链有计数器: pkts: 由规则或链所匹配到的报文的个数: bytes:由规则或链匹配到的所有报文大小之和: iptables命令: ...
- php的Allowed memory size of 134217728 bytes exhausted问题
提示Allowed memory size of 134217728 bytes exhausted,出现这种错误的情况常见的有三种: 0:查询的数据量大. 1:数据量不大,但是php.ini配置的内 ...
- Linux 服务器 安装 goflyway
github官方开发主页:https://github.com/coyove/goflyway goflyway的用途就不说了,你能搜到此文章就说明已经知道了. centos和Ubuntu均可使用,其 ...
- jdbcTemplate 后台接口中的分页
Springboot+jdbcTemplate 对查询结果列表做分页, 之前开发的小项目,数据逐渐增多,每次返回所有的查询结果,耗费性能和时间 想到做分页. 于是从简单的分页做起. jdbcTemp ...
- leecode第一百二十二题(买卖股票的最佳时机II)
class Solution { public: int maxProfit(vector<int>& prices) { int len=prices.size(); ) ; , ...
- sort-选择排序
void sort_select(vector<int> &v) { for(int i=0;i<v.size()-1;i++) { int min=v[i]; int in ...
- 关于datatables自适应以及自定义列宽度的总结
table-layout:fixed;可以自定义列的宽度 <div id="bizhi" style="width:100%;height: 85%;overflo ...
- win10 cmake编译 opencv4.0 + pyhton3.7x64
在超极本上本来不想编译了,反正没有cuda.但发现即使下载的opencv_contrib也不包含sift等等nonfree库了,要自己编译开编译选项才可以.坑啊,自己编译吧.反正opencv已经这么庞 ...
- Codefroces 958C2 - Encryption (medium)
C2 - Encryption (medium) 思路: 传统的dp: dp[i][j] 表示到第i个位置为止,分成j段的最大值 dp[i][j] = max(dp[l][j-1] + (sum[i] ...
- Java泛型简单理解
优点1: 没有使用泛型,向list集合中添加非字符串,运行时会报错:类型不匹配 ObjectList.java: package cn.nxl2018; import java.util.ArrayL ...