什么是深度学习?   一种机器学习算法,based on 【多层】【非线性变换】的【神经网络】结构

优点:可以使用 低维 稠密 连续 的向量表示不同粒度的语言单元,

还可以使用循环、卷积、递归等神经网络模型对不同的语言单元向量进行组合,获得更大的语言单元,

甚至可以将图像、语言等不同的东西表示在同一个语义向量空间中

=====================================

1.

Robust, 鲁棒性,健壮性,指系统稳定,抗风险,比如面对训练数据有部分异常值,依然可以表现稳定。

skipgram就被证明具有鲁棒性,且训练的结果更好(我目前还是使用CBOW,后期使用skipgram试试)

2.

word2vec窗口大小有很大影响:

窗口大更容易学习到主题的相似性:dog  bark leash

而窗口小,更容易学习到近义词,比如walk和run和approach(比如我们本次任务中,经测试windows=3是比较合理的)

3.

窗口中所有不同的上下文词同等重要,与距离无关

4.

如果使用句法窗口,将句法依存树的信息作为特征,可以训练出功能相似词,比如颜色,动作,

是不是可以用来生成新的文本内容?

5.

如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)

6.

词的相似性定义:使用了分布式假设,我们认为,两个词,如果他们周围的词的分布是一样的,那么这两个词是相似的

7.

https://blog.csdn.net/hrbeuwhw/article/details/79010712

word2vec原理详解

softmax

https://blog.csdn.net/bitcarmanlee/article/details/82320853

至于为什么会提出反向传播算法,我直接应用梯度下降(Gradient Descent)不行吗?想必大家肯定有过这样的疑问。答案肯定是不行的,纵然梯度下降神通广大,但却不是万能的。梯度下降可以应对带有明确求导函数的情况,或者说可以应对那些可以求出误差的情况,比如逻辑回归(Logistic Regression),我们可以把它看做没有隐层的网络;但对于多隐层的神经网络,输出层可以直接求出误差来更新参数,但其中隐层的误差是不存在的,因此不能对它直接应用梯度下降,而是先将误差反向传播至隐层,然后再应用梯度下降,其中将误差从末层往前传递的过程需要链式法则(Chain Rule)的帮助,因此反向传播算法可以说是梯度下降在链式法则中的应用。

https://www.cnblogs.com/wuzhitj/p/6298011.html

详解神经网络

https://blog.csdn.net/lyl771857509/article/details/78990215

Notes for Neural Network Methods for Natural Language Processing的更多相关文章

  1. 论文阅读 | Probing Neural Network Understanding of Natural Language Arguments

    [code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据( ...

  2. [C5W2] Sequence Models - Natural Language Processing and Word Embeddings

    第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 词汇表征(Word Representation) 上周我们学习了 RN ...

  3. (zhuan) Speech and Natural Language Processing

    Speech and Natural Language Processing obtain from this link: https://github.com/edobashira/speech-l ...

  4. Natural Language Processing with Python - Chapter 0

    一年之前,我做梦也想不到会来这里写技术总结.误打误撞来到了上海西南某高校,成为了文科专业的工科男,现在每天除了膜ha,就是恶补CS.导师是做计算语言学的,所以当务之急就是先自学计算机自然语言处理,打好 ...

  5. spaCy is a library for advanced natural language processing in Python and Cython:spaCy 工业级自然语言处理工具

    spaCy is a library for advanced natural language processing in Python and Cython. spaCy is built on ...

  6. How 5 Natural Language Processing APIs Stack Up

    https://www.programmableweb.com/news/how-5-natural-language-processing-apis-stack/analysis/2014/07/2 ...

  7. Natural Language Processing 课程,文章,论文

    CS224n: Natural Language Processing with Deep Learning http://cs224d.stanford.edu/syllabus.html http ...

  8. 图书分享 -《Natural Language Processing with Python》

    -<Natural Language Processing with Python> 链接:https://pan.baidu.com/s/1_oalRiUEw6bXbm2dy5q_0Q ...

  9. 吴恩达《深度学习》-课后测验-第五门课 序列模型(Sequence Models)-Week 2: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入)

    Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...

随机推荐

  1. iOS - 富文本直接设置文字的字体大小和颜色

    富文本效果图: 富文本实现代码: UILabel *orderSureLabel = [Common lableFrame:CGRectZero title:] textColor:[UIColor ...

  2. 基础知识——CentOS7操作系统的安装图文教程

    学习了很久的Linux操作系统,也看了不少的资料,对于操作系统的安装,相对来说都在不断的改进,安装的难度也在不断的降低,操作步骤也变得非常的简单了. 有很多CentOS系统的安装教程,但是比较不全面或 ...

  3. python3 的 mysql 简单操作

    一.python 提供的 db 接口 pymysql 两个基本对象: connection.cursor 连接示例 # connect_demo.py import pymysql db = pymy ...

  4. Fis3构建迁移Webpack之路

    Webpack从2015年9月第一个版本横空初始至今已逾2载.它的出现,颠覆了一大批主流构建如Ant.Grunt和Gulp等等.腾讯NOW直播IVWEB团队之前一直采用Fis构建,本篇文章主要介绍从F ...

  5. bochs

    ● 制作一个硬盘 ./bximage 步骤与制作软盘的相似,完成后将bochs软件提示的最后一句话,添加到自己的配置文件里: dd if=loader.bin of=~/Softwares/bochs ...

  6. java 验证字符串是否包含中文字符

    中文的模式:"[\\u4e00-\\u9fa5]|\\\\u" 例子: private static final Pattern p = Pattern.compile(" ...

  7. 关于初识Java整理

  8. centos6.5设置key登录

    1.ssh-keygen -t rsa  一路回车,当然可以设置key密码 2.cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_key ...

  9. ionic中数据进行操作后,需要直接显示改变后的数据,数据刷新

    数据分页是通过使用下拉加载,查询sqlite本地数据的数据 <ion-refresher (ionRefresh)="doTest($event)"> <ion- ...

  10. Page4:线性系统的运动求解以及脉冲响应矩阵与传递函数的关系[Linear System Theory]

    内容包含线性系统的运动求解,系统矩阵特征值和特征向量对运动的影响,脉冲响应矩阵与传递函数之间的关系