<Spark><Tuning and Debugging>
Overview
- 这一部分我们主要讨论如果配置一个Spark application,如何tune and debug Spark workloads
- 配置对Spark应用性能调优很重要。我们有必要理解一个Spark应用的性能。
Configuring Spark with SparkConf
- 我们知道,在创建SparkContext的时候会需要SparkConf实例。一个例子:
val conf = new SparkConf()
.setAppName("Test")
.setMaster("local")
val sc = new SparkContext(conf)- SparkConf类很简单,包含一些用户可覆盖的配置选项的键值对
- 也可以通过spark-submit动态地设置配置。基于这种方法,你可以在程序中new一个“空”的SparkConf,直接传给SparkContext。这种方式下可以直接使用 --conf标记,该标记之后可以使用任何Spark配置值。例子:
bin/spark-submit \
--class com.wtttt.spark.test \
--master local \
--name "test" \
--conf spark.ui.port=36000 \
test.jar- 这种spark-submit的方式除了可以使用--conf,还可以从文件加载。缺省情况下,spark-submit会在conf/spark-defaults.conf中读取whitespace-delimited 的键值对。你也可以使用
--properties-file 来指定conf文件。例子:
bin/spark-submit \
--class com.wttttt.spark.test \
--properties-file my-config.conf \
test.jar## Contents of my-config.conf ##
spark.master local[4]
spark.app.name "test"
spark.ui.port 36000 - 如果多处同时设置的话,程序设置的优先级高于spark-submit指定的。
- 完整的conf选项参考 spark configuration。
Components of Execution: Jobs, Tasks, and Stages
- 我们知道,Spark会把逻辑表示翻译成一系列物理执行计划,by merging multiple operations into tasks.
- 看下面的例子:
val input = sc.textFile("input.txt") val tokenized = input.
map(line => line.split(" ")).
filter(words => words.size > 0) val counts = tokenized.
map(words => (words(0), 1)).
reduceByKey{ (a, b) => a + b} // example of the source file "input.txt"
## input.txt ##
INFO This is a message with content
INFO This is some other content
(empty line)
INFO Here are more messages
WARN This is a warning
(empty line)
ERROR Something bad happened
WARN More details on the bad thing
INFO back to normal messages - 当我们在shell输入上述语句之后,并不会执行任何actions,只会隐式地定义一个DAG(有向无环图)。我们可以用toDebugString来看看:
scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
+-(2) MappedRDD[295] at map at <console>:17
| FilteredRDD[294] at filter at <console>:15
| MappedRDD[293] at map at <console>:15
| input.text MappedRDD[292] at textFile at <console>:13 | input.text HadoopRDD[291] at textFile at <console>:13- 我们执行一个action来触发计算: counts.collect()
- 这时,Spark的调度器scheduler会创建一个物理执行计划来计算该action所需的RDDs(递归地向前找所有需要的RDDs)。
- 更复杂的情况是,stages的物理集合不是与RDD graph 1:1对应的。这种情况发生在scheduler执行pipelining或者合并多个RDDs到一个stage的时候。pipelining发生在RDDs可以从parents本地计算的时候(不需要data movement)。
- 对于上面的例子,计算counts的时候,即使counts有很多个parent RDDs,它也只存在two levels of indentation。所以它的物理执行只需要两个stages。该例中的pipelining就是因为有多个filter和map的序列。如下图:

- 运行这个action,看spark UI: 一共一个job,两个stages。
- Completed Jobs (1)

Completed Stages (2)

- 除了pipelining,Spark内部的scheduler也会在有RDD已经被persisted到内存或磁盘的时候缩短RDD graph的lineage。
- 还有一种(可缩短lineage的)情况是,RDD已经通过之前的shuffle被materialized到磁盘。即使没有显式地调用persist()。这种情况是充分利用了shuffle的输出会写到磁盘的特点。
- 做个实验:
counts.cache()
counts.collect()看下这个job的stages:

可以看到只执行了一个stage,另一个被skip了。
- 以上,Spark执行的时候包括这么几个阶段:
- User code定义一个RDD的DAG;
- Actions force DAG到执行计划的translation;这时Spark调度器提交一个job来计算所有所需的RDDs。该job会有一或多个stages,它们是由task组成的并行计算浪潮(parallel waves of computation composed of tasks)。由于pipelining,每个stage可以对应多个RDDs。
- Tasks被调度,在集群上执行;stages按顺序执行,individual tasks执行RDD的各个部分。
Finding Information
- 具体的进度信息、性能度量可以在Spark web UI以及driver和executor的logfiles中找到。
Spark Web UI
- 说明:YARN cluster模式下,application driver是运行在cluster内部的,因此你需要通过YARN resourceManager来访问UI。
Jobs: Progress and metrics of stages, tasks, and more
- 一般首先是点进去一个比较慢的stage,其内部可能存在skew,因此你可以看下是否某些tasks运行时间过长。比如你可以看是否这些tasks read, write or compute much more than others?
- 你还可以看每个task读、计算、写分别占用的时间。如果tasks花很少时间读写,那么可能user code本身是expensive的,作为solution之一你可以参考advanced programming中提到的"Working on a Per-Partition Basis"来减少比如创建对象的开销。 但是如果tasks花费很多时间来从外部系统读取数据,那么可能不存在更多的外部优化方式。
Storage: Information for RDDs that are persisted
- storage页面包含了persisted RDDs的信息。
- 通常,如果很多RDDs都会缓存的话,older ones可能会被移除。
Executors: A list of executors present in the application
- 该页列出了应用中活跃的executors,以及每个executor在处理和存储中的一些度量。
- 这一页的用处是你可以确认你的application拥有你所预期的资源。
Environment: Debugging Spark's configuration
This page enumerates the set of active properties in the environment of your Spark application.
Driver and Executor logs
- YARN模式下,最简单的收集日志的方式是使用YARN日志收集工具
(running yarn logs -applicationId <app ID>)
<Spark><Tuning and Debugging>的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- Confluence 6 创建一个空间
在 Confluence 中并不限制你可以创建多少空间.你可以选择为你每一个小组,项目都创建一个空间,或者你也可以将这 2 者混合在一起.所有的这些都基于你的需求来决定的. 每一个 Confluenc ...
- DRF之简介以及序列化操作
1. Web应用模式. 在开发Web应用中,有两种应用模式: 前后端不分离 2.前后端分离 2. api接口 为了在团队内部形成共识.防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很好的接口实 ...
- 118. Pascal's Triangle (java)
问题描述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...
- vue组件插槽
vue中子组件内容如何定义为可扩展的呢,就是用slot插槽来实现.如下图 如果<slot></slot>标签有内容,那就默认显示里面的内容,父组件传了就会覆盖此默认的内容.
- .net 基础
之前给大家总结了java的面试几次技巧总结,同学们看了觉得还是不错,能够得到大家的认可,感觉还是挺不错的.现在又有同学来想小编索要.NET面试的总结了,好吧.谁让小编这么好呢!以下是.NET面试之框架 ...
- centos命令行系列之centos6防火墙的关闭以及开启
输入:cat /etc/issue 查看版本 (一)通过service命令 注:service命令开启以及关闭防火墙为即时生效,下次重启机器的时候会自动复原 查看防火墙状态:service ipt ...
- [转]一次CMS GC问题排查过程(理解原理+读懂GC日志)
这个是之前处理过的一个线上问题,处理过程断断续续,经历了两周多的时间,中间各种尝试,总结如下.这篇文章分三部分: 1.问题的场景和处理过程:2.GC的一些理论东西:3.看懂GC的日志 先说一下问题吧 ...
- 微信小程序FAQ
1. 图片名注意大小写. 不然本地预览是可以看到的.上传后用手机就看不到了. 2. bindtap等事件传参 wxml <view id="tapTest" data-hi= ...
- laravel查找某个类拥有的方法:
1.在当前项目下,使用cmd窗口,输入: php artisan tinker 在输入: app('log') 显示出:Illuminate\Log\Writer 2.在phpstorm中按:shif ...
- C++解析四-友员函数、内联函数、静态成员
友元函数 类的友元函数是定义在类外部,但有权访问类的所有私有(private)成员和保护(protected)成员.尽管友元函数的原型有在类的定义中出现过,但是友元函数并不是成员函数.友元可以是一个函 ...