时间线:

OpenAI 发表的 Trust Region Policy Optimization,

Google DeepMind 看过 OpenAI 关于 TRPO后, 2017年7月7号,抢在 OpenAI 前面 把 Distributed PPO给先发布了.

OpenAI 还是在 2017年7月20号 发表了一份拿得出手的 PPO 论文 。(ppo+ppo2)

Proximal Policy Optimization

PPO是off-policy的方法。

跟环境互动的agent与用来学习得agent 不是同一个agent,可以理解为PPO 是一套 Actor-Critic 结构, Actor 想最大化 J_PPO, Critic 想最小化 L_BL.

利用importance sampling

通过KL散度加一个惩罚,使梯度更新的时候幅度不要太大。

总的来说 PPO 是一套 Actor-Critic 结构, Actor 想最大化 J_PPO, Critic 想最小化 L_BL. Critic 的 loss 好说, 就是减小 TD error. 而 Actor 的就是在 old Policy 上根据 Advantage (TD error) 修改 new Policy, advantage 大的时候, 修改幅度大, 让 new Policy 更可能发生. 而且他们附加了一个 KL Penalty (惩罚项, 不懂的同学搜一下 KL divergence), 简单来说, 如果 new Policy 和 old Policy 差太多, 那 KL divergence 也越大, 我们不希望 new Policy 比 old Policy 差太多, 如果会差太多, 就相当于用了一个大的 Learning rate, 这样是不好的, 难收敛.

Trust Region Policy Optimization

ppo是吧惩罚项放在了目标函数中,而TRPO 是以 constrain的形式。不好求解。

PPO2

看图,横坐标是   ,当A>0时候,奖励是正的,更新的幅度越大越好,但是为了

加入惩罚,所以更新的幅度在横坐标大于时候,就不增加同一个幅度,所以是一条横线,不会无限制增大。

同理,当A<0时候,横坐标是更新的幅度,因为奖励是负数,正常应该 更新是越小越好,但是不能无限小啊,所以假如

惩罚就是不能无限小。

Distributed Proximal Policy Optimization

摘自:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/6-4-DPPO/

Google DeepMind 提出来了一套和 A3C 类似的并行 PPO 算法.  paper

取而代之, 我觉得如果采用 OpenAI 的思路, 用他那个 “简陋” 伪代码, 但是弄成并行计算倒是好弄点. 所以我就结合了 DeepMind 和 OpenAI, 取他们的精华, 写下了这份 DPPO 的代码.

总结一下我是怎么写的.

  • 用 OpenAI 提出的 Clipped Surrogate Objective
  • 使用多个线程 (workers) 平行在不同的环境中收集数据
  • workers 共享一个 Global PPO
  • workers 不会自己算 PPO 的 gradients, 不会像 A3C 那样推送 Gradients 给 Global net
  • workers 只推送自己采集的数据给 Global PPO
  • Global PPO 拿到多个 workers 一定批量的数据后进行更新 (更新时 worker 停止采集)
  • 更新完后, workers 用最新的 Policy 采集数据

强化学习---TRPO/DPPO/PPO/PPO2的更多相关文章

  1. 深度学习-深度强化学习(DRL)-Policy Gradient与PPO笔记

    Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅 ...

  2. 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)

    深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://b ...

  3. Ubuntu下常用强化学习实验环境搭建(MuJoCo, OpenAI Gym, rllab, DeepMind Lab, TORCS, PySC2)

    http://lib.csdn.net/article/aimachinelearning/68113 原文地址:http://blog.csdn.net/jinzhuojun/article/det ...

  4. (转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)

    本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 201 ...

  5. DRL强化学习:

    IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源: ...

  6. ReLeQ:一种自动强化学习的神经网络深度量化方法

    ReLeQ:一种自动强化学习的神经网络深度量化方法     ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Ap ...

  7. 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction

    转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...

  8. [强化学习]Part1:强化学习初印象

    引入 智能 人工智能 强化学习初印象 强化学习的相关资料 经典书籍推荐:<Reinforcement Learning:An Introduction(强化学习导论)>(强化学习教父Ric ...

  9. 李宏毅强化学习完整笔记!开源项目《LeeDeepRL-Notes》发布

    Datawhale开源 核心贡献者:王琦.杨逸远.江季 提起李宏毅老师,熟悉强化学习的读者朋友一定不会陌生.很多人选择的强化学习入门学习材料都是李宏毅老师的台大公开课视频. 现在,强化学习爱好者有更完 ...

随机推荐

  1. day2_抓包-抓包工具Charles

    1.Charles功能简单描述 1)定位问题,前端的.后端的问题 2)发出去的请求,请求头.请求体,返回的数据 3)拦截请求,修改请求 2.Charles抓包(Android手机) 1.要求手机得和你 ...

  2. Numpy 机器学习三剑客之Numpy

    NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...

  3. inet_addr()和inet_ntoa()使用注意

    inet_addr():无法处理255.255.255.255,认为该ip为非法,返回-1 inet_ntoa():转换后地址存储在静态变量中,连续两次调用,第二次会覆盖第一次的值. 建议使用inet ...

  4. Python pip 如何升级

    场景:部署环境时,在线安装第三方库(pip install flask-bootstrap),提示pip版本过低. 解决方法一:        命令: python -m pip install -- ...

  5. Automation服务器不能创建对象(金税盘)

    1. 安装防伪开票组件接口软件: 2. 把接口的注册文件放到%防伪开票系统的安装目录% \BIN下 3. 把%防伪开票系统的安装目录%\bin下的TaxCardX.dll文件复制至 c:\window ...

  6. cmd远程连接oracle

    sqlplus 用户名/密码@IP:端口号/oracle实例

  7. TlistView基本使用

    //增加 procedure TForm1.Button1Click(Sender: TObject); var lsItem: TListItem; begin lsItem := ListView ...

  8. html-标签页

    <template> <div class="pos-frame"> <div class="pos h100"> < ...

  9. O(N)的时间寻找最大的K个数

    (转:http://www.cnblogs.com/luxiaoxun/archive/2012/08/06/2624799.html) 寻找N个数中最大的K个数,本质上就是寻找最大的K个数中最小的那 ...

  10. python认知及六大标准数据类型

    --- typora-root-url: assets --- ### -python的认知 ``` 89年开发的语言,创始人范罗苏姆(Guido van Rossum),别称:龟叔(Guido). ...