题意

给你n个点,m条边,要求每条边只能走一次的S到T的最短路径的个数


题解

在我又WA又TLE还RE时,yyb大佬告诉我说要跑两遍SPFA,还说我写的一遍SPFA是错的,然而

啪啪打脸。。。
而且他的

比我跑得慢,2333
接下来讲一下方法
首先一遍SPFA(或dijkstra)从S跑一遍到所有点的最短路,重新建图时对于每对u, v 若 dis[u] + w[u][v] == dis[v] 则加入这条边,容量为1(还要加反边),最后跑最大流即可,最大流我用的是Dinic,然后注意手打队列,系统的会TLE


常熟巨大的丑陋代码

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define ll long long
# define mem(a, b) memset(a, b, sizeof(a))
# define Min(a, b) (((a) > (b)) ? (b) : (a))
# define Max(a, b) (((a) < (b)) ? (b) : (a))
using namespace std; IL int Get(){
RG char c = '!'; RG int x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c <= '9' && c >= '0'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} const int MAXN = 1001, MAXM = 200001, INF = 2147483647;
int n, m, ft[MAXN], cnt, ans, dis[MAXN], vis[MAXN], _ft[MAXN], level[MAXN], Q[MAXM];
struct Edge{
int to, f, nt;
} edge[MAXM], _edge[MAXM]; IL void Add(RG int u, RG int v, RG int f){
edge[cnt] = (Edge){v, f, ft[u]}; ft[u] = cnt++;
} IL void Add2(RG int u, RG int v, RG int f){
_edge[cnt] = (Edge){v, f, _ft[u]}; _ft[u] = cnt++;
} IL void SPFA(RG int S, RG int T){
RG int head = 0, tail = 0;
Q[0] = S; vis[S] = 1; dis[S] = 0;
while(head <= tail){
RG int u = Q[head++]; vis[u] = 0;
for(RG int e = ft[u]; e != -1; e = edge[e].nt){
RG int v = edge[e].to, f = edge[e].f + dis[u];
if(dis[v] > f){
dis[v] = f;
if(!vis[v]) vis[v] = 1, Q[++tail] = v;
}
}
}
} IL bool Bfs(RG int S, RG int T){
mem(level, 0);
RG int head = 0, tail = 0;
Q[0] = S; level[S] = 1;
while(head <= tail){
RG int u = Q[head++];
if(u == T) return 1;
for(RG int e = _ft[u]; e != -1; e = _edge[e].nt){
RG int v = _edge[e].to, f = _edge[e].f;
if(f && !level[v]){
level[v] = level[u] + 1;
Q[++tail] = v;
}
}
}
return 0;
} IL int Dfs(RG int u, RG int T, RG int maxf){
if(u == T) return maxf;
RG int res = 0;
for(RG int e = _ft[u]; e != -1; e = _edge[e].nt){
RG int v = _edge[e].to, f = _edge[e].f;
if(level[u] + 1 == level[v] && f){
f = Dfs(v, T, Min(f, maxf - res));
_edge[e].f -= f; _edge[e ^ 1].f += f;
res += f;
if(res == maxf) break;
}
}
return res;
} int main(){
RG int T = Get();
while(T--){
n = Get(); m = Get();
mem(ft, -1); mem(dis, 63); mem(_ft, -1); ans = cnt = 0;
for(RG int i = 1; i <= m; i++){
RG int u = Get(), v = Get(), f = Get();
if(u == v) continue;
Add(u, v, f);
}
RG int S = Get(), T = Get(); cnt = 0;
SPFA(S, T);
for(RG int i = 1; i <= n; i++)
for(RG int e = ft[i]; e != -1; e = edge[e].nt)
if(dis[i] + edge[e].f == dis[edge[e].to])
Add2(i, edge[e].to, 1), Add2(edge[e].to, i, 0);
while(Bfs(S, T)) ans += Dfs(S, T, INF);
printf("%d\n", ans);
}
return 0;
}

Marriage Match IV HDU - 3416的更多相关文章

  1. O - Marriage Match IV - hdu 3416(最短路+最大流)

    题目大意:在城市A的男孩想去城市B的女孩,不过他去城市B必须走最短路,并且走过的路不可以再走,问他最多能看这个女孩多少次.   分析:因为这个男孩直走最短路,所以我们必须求出来所有最短路径上的路,怎么 ...

  2. Marriage Match IV HDU - 3416(最短路 + 最大流)

    题意: 求有多少条最短路 解析: 正着求一遍最短路 得dis1 反着求一遍得 dis2   然后 遍历所有的边 如果  dis1[u] + dis2[v] + w == dis1[B], 则说明这是一 ...

  3. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  4. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  5. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  6. Marriage Match IV(最短路+网络流)

    Marriage Match IV http://acm.hdu.edu.cn/showproblem.php?pid=3416 Time Limit: 2000/1000 MS (Java/Othe ...

  7. HDU3605:Marriage Match IV

    Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. HDU3416 Marriage Match IV —— 最短路径 + 最大流

    题目链接:https://vjudge.net/problem/HDU-3416 Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    ...

  9. Q - Marriage Match IV (非重复最短路 + Spfa + 网络最大流Isap)

    Q - Marriage Match IV Do not sincere non-interference. Like that show, now starvae also take part in ...

随机推荐

  1. centos 手动增加swap分区

    SWAP是Linux中的虚拟内存,用于扩充物理内存不足而用来存储临时数据存在的.它类似于Windows中的虚拟内存.在Windows中,只可以使用文件来当作虚拟内存.而linux可以文件或者分区来当作 ...

  2. virtualbox命令行共享CentOS目录

    virtualbox命令行共享CentOS目录   1. 安装virtualbox增强工具 "右ctrl+c" 显示和隐藏virtualbox虚拟机的菜单栏. 在VirtualBo ...

  3. 在mac上安装Docker

    1.进入一下地址进行下载docker https://download.docker.com/mac/stable/Docker.dmg 进入后进行下载后进行安装 2.将其拖动到Appliaction ...

  4. MysqL主从复制_模式之GTID复制

    基于GTID的复制是从Mysql5.6开始支持的一种新的复制方式,此方式与传统基于日志的方式存在很大的差异,在原来的基于日志的复制中,从服务器连接到主服务器并告诉主服务器要从哪个二进制日志的偏移量开始 ...

  5. Nginx和php是怎么通信的?

    先来看一下搭建好PHP运行环境的Nginx配置文件. 非常重要的就是 fastcgi_pass 指令了,这个指令用于指定 fpm 进程监听的地址,Nginx 会把所有的 php 请求翻译成 fastc ...

  6. UVa 11988破损的键盘

    这题是很好的学习用数组实现链表的例子. 原题链接 UVa11988 题意 输入一段文本,字符'['表示Home键,']'表示End键.输出屏幕上面的结果. 思路 难点在于在字符串的头和尾插入字符,如果 ...

  7. Java NIO之缓冲区

    1.简介 Java NIO 相关类在 JDK 1.4 中被引入,用于提高 I/O 的效率.Java NIO 包含了很多东西,但核心的东西不外乎 Buffer.Channel 和 Selector.这其 ...

  8. 基于Python的Flask的开发实战(第一节Flask安装)

    1.安装python虚拟环境 easy_install virtualenv easy_install pip cd /home/admin virtualenv flask-website sour ...

  9. SQL2005查询死锁的表和具体的语句

    查是哪个进程死锁了哪些表 select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) tableName fro ...

  10. webpack打包速度和性能再次优化

    一. 改单dll为双dll 因为上图原因,使用CommonsChunkPlugin时,导致其打包出来的vendors.js内的模块ID会因为其他文件引用模块数量的变化而变化. 所以现利用DllPlug ...