Luogu2973:[USACO10HOL]赶小猪
题面
Sol
设\(f[i]\)表示炸弹到\(i\)不爆炸的期望
高斯消元即可
另外,题目中的概率\(p/q\)实际上为\(1-p/q\)
还有,谁能告诉我不加\(EPS\),为什么会输出\(-0.00000\)
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(505);
const int __(100005);
IL ll Input(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, m, fst[_], nxt[__], cnt, to[__], dg[_];
double ans, f[_], a[_][_], p, q;
IL void Add(RG int u, RG int v){
to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++; ++dg[v];
}
IL void Gauss(){
for(RG int i = 1; i < n; ++i)
for(RG int j = i + 1; j <= n; ++j){
RG double div = a[j][i] / a[i][i];
for(RG int k = 1; k <= n + 1; ++k) a[j][k] -= a[i][k] * div;
}
for(RG int i = n; i; --i){
f[i] = a[i][n + 1] / a[i][i];
for(RG int j = i - 1; j; --j) a[j][n + 1] -= f[i] * a[j][i];
}
}
int main(RG int argc, RG char* argv[]){
n = Input(); m = Input(); Fill(fst, -1);
q = Input(); q /= Input(); p = 1.0 - q;
for(RG int i = 1, u, v; i <= m; ++i)
u = Input(), v = Input(), Add(u, v), Add(v, u);
for(RG int u = 1; u <= n; u++){
a[u][u] = -1.0;
for(RG int e = fst[u]; e != -1; e = nxt[e]) a[to[e]][u] = p / dg[u];
}
a[1][n + 1] = -1.0; Gauss();
for(RG int i = 1; i <= n; ++i){
f[i] *= q;
if(fabs(f[i]) < 1e-9) f[i] = 0;
}
for(RG int i = 1; i <= n; ++i) printf("%.9lf\n", f[i]);
return 0;
}
Luogu2973:[USACO10HOL]赶小猪的更多相关文章
- [Luogu2973][USACO10HOL]赶小猪
Luogu sol 首先解释一波这道题无重边无自环 设\(f_i\)表示\(i\)点上面的答案. 方程 \[f_u=\sum_{v,(u,v)\in E}(1-\frac PQ)\frac{f_v}{ ...
- [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- 小猪cms微信二次开发之怎样分页
$db=D('Classify'); $zid=$db->where(array('id'=>$this->_GET('fid'),'token'=>$this->tok ...
随机推荐
- ps删除或覆盖内容
除了选区删除.复制选区内容覆盖之外另外一种方法. 删掉字母"PS": 1. 矩形框选工具在字母上方画出选区 2. Ctrl+T,并拖拽底部以覆盖字母 3. 完成
- 洛谷P3369 【模板】普通平衡树(Treap/SBT)
洛谷P3369 [模板]普通平衡树(Treap/SBT) 平衡树,一种其妙的数据结构 题目传送门 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除 ...
- Linux 6.4 设置yum 为centOS源
一. 删除Redhat 自带的yum // root 用户执行 rpm -aq|grep yum|xargs rpm -e --nodeps 二 .下载CentOS 的 yum 安装文件 wget h ...
- 框架学习笔记之Maven简介和配置
一.什么是Maven?★Maven可翻译为“知识的积累”.“专家”.“内行”,它是一个跨平台的项目管理工具.★Maven提供了开发人员构建一个完整的生命周期框架,开发团队可以自动完成项目的基础工具建设 ...
- 树莓派系列教程:1.环境与系统,无显示器无键盘无网线联网并使用PuTTy与VNC图形界面远程登录
本文所需物品清单: Raspberry Pi 3 Model B 主板.SD卡与读卡器(用于烧录系统) 资料整理来源在文尾 需要下载的资源与工具: 推荐系统-Raspbian 树莓派官方深度定制的硬件 ...
- shiro进行散列算法操作
shiro最闪亮的四大特征:认证,权限,加密,会话管理 为了提高应用系统的安全性,这里主要关注shiro提供的密码服务模块: 1.加密工具类的熟悉 首先来个结构图,看看shiro提供了哪些加密工具类: ...
- Hibernate学习(二)保存数据
package cn.lonecloud.test; import java.util.Date; import org.hibernate.HibernateException; import or ...
- 浏览器输入URL到响应页面的全过程
B/S网络架构从前端到后端都得到了简化,都基于统一的应用层协议HTTP来交互数据,HTTP协议采用无状态的短链接的通信方式,通常情况下,一次请求就完成了一次数据交互,通常也对应一个业务逻辑,然后这次通 ...
- windows NLB实现MSSQL读写分离--从数据库集群读负载均衡
主从模式,几乎大部分出名的数据库都支持的一种集群模式. 当Web站点的访问量上去之后,很多站点,选择读写分离,减轻主数据库的的压力.当然,一主多从也可以作用多个功能,比如备份.这里主要演示如何实现从数 ...
- APP性能测试(电量)
#encoding:utf-8 import csv import os import time #控制类 class Controller(object): def __init__(self, c ...