从四个层次来理解caffe:Blob、Layer、Net、Solver。
 
1.Blob
Blob是caffe基本的数据结构,用四维矩阵 Batch×Channel×Height×Weight表示,存储了网络的神经元激活值和网络参数,以及相应的梯度(激活值的残差和dW、db)。其中包含有cpu_data、gpu_data、cpu_diff、gpu_diff、mutable_cpu_data、mutable_gpu_data、mutable_cpu_diff、mutable_gpu_diff这一堆很像的东西,分别表示存储在CPU和GPU上的数据(印象中二者的值好像是会自动同步成一致的),其中带data的里面存储的是激活值和W、b,diff中存储的是残差和dW、db,另外带mutable和不带mutable的一对指针所指的位置是相同的,只是不带mutable的只读,而带mutable的可写。
 
2.Layer
Layer代表了神经网络中各种各样的层,组合成一个网络。一般一个图像或样本会从数据层中读进来,然后一层一层的往后传。除了数据层比较特殊之外,其余大部分层都包含4个函数:LayerSetUp、Reshape、Forward、Backward。其中LayerSetup用于初始化层,开辟空间,填充初始值什么的。Reshape是对输入值进行维度变换,比如pooling接全连接层的时候要先拉成一个向量再计算。Forward是前向传播,Backward是后向传播。当然对于我这种喜欢偷懒的童鞋一般学习的时候最喜欢看各种层的Backward函数了,最好是对着公式边推导边看,可以有更直观的理解。
那么数据是如何在层之间传递的呢?每一层都会有一个(或多个)Bottom和top,分别存储输入和输出,比如bottom[0]->cpu_data()存输入的神经元激活值,换成top存输出的,换成cpu_diff()存的是激活值的残差,换成gpu是存在GPU上的数据,再带上mutable就可写了,这些是神经元激活值相关的,如果这个层前后有多个输入输出层,就会有bottom[1],比如accuracy_layer就有两个输入,fc8和label。而每层的参数会存在this->blobs_里,一般this->blobs_[0]存W,this->blobs_[1]存b,this->blobs_[0]->cpu_data()存的是W的值,this->blobs_[0]->cpu_diff()存的梯度dW,b和db也类似,然后换成gpu是存在GPU上的数据,再带上mutable就可写了。

注意:凡是能在GPU上运算的层都会有名字相同的cpp和cu两个文件,cu文件中运算时基本都调用了cuda核函数,可以在math_function.cu中查看。
 
3.Net
Net就是把各种层按train_val.prototxt的定义堆叠在一起,首先进行每个层的初始化,然后不断进行Update,每更新一次就进行一次整体的前向传播和反向传播,然后把每层计算得到的梯度计算进去,完成一次更新,这里注意每层在Backward中只是计算dW和db,而W和b的更新是在Net的Update里最后一起更新的。而且在caffe里训练模型的时候一般会有两个Net,一个train一个test。刚开始训练网络时前面的一大堆输出,网络的结构什么的也都是这里输出的。
 
4.Solver
Solver是按solver.prototxt的参数定义对Net进行训练,首先会初始化一个TrainNet和一个TestNet,然后其中的Step函数会对网络不断进行迭代,主要就是两个步骤反复迭代:①不断利用ComputeUpdateValue计算迭代相关参数,比如计算learning rate,把weight decay加上什么的,②调用Net的Update函数对整个网络进行更新。迭代中的一大堆输出也是在这里输出的,比如当前的loss和learning rate等等。

借用《21天实战caffe》里面的一段很形象的描述:

Caffe的万丈高楼(Net)是按照我们的设计图纸(prototxt),用Blob这些砖块筑成一层层(Layer)楼房,最后通过SGD方法(Solver)进行先简装修(Train)、后精装修(Finetune)实现的。最后通过(Test)验收。

附:关于Caffe实现

初始化的过程:train函数先生成solver类的对象,solver对象中有net类的内部变量,所以solver对象生成的同时生成了net类对象,solver对象是根据train函数中传入的prototxt文件来初始化的。
同理net类对象里有一个layer类的vector容器,里面实际将会装进各个不同的层,net类对象会通过传入solver类对象的初始化量来找到xxx.prototxt这样的层描述文件中的内容,来初始化这个layer类的vector容器。

然后训练的过程:train函数执行solver的solve函数,solve函数会根据设定的参数循环调用net类的forward和backward函数,net类的forforward和backward函数主要负责控制前向和反相的顺序,按照顺序调用不同的layer前向和反向的函数,而layer类中的forward和backward函数负责不同层实现的细节。

caffe简单介绍的更多相关文章

  1. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  2. [原创]关于mybatis中一级缓存和二级缓存的简单介绍

    关于mybatis中一级缓存和二级缓存的简单介绍 mybatis的一级缓存: MyBatis会在表示会话的SqlSession对象中建立一个简单的缓存,将每次查询到的结果结果缓存起来,当下次查询的时候 ...

  3. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  4. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  5. yii2的权限管理系统RBAC简单介绍

    这里有几个概念 权限: 指用户是否可以执行哪些操作,如:编辑.发布.查看回帖 角色 比如:VIP用户组, 高级会员组,中级会员组,初级会员组 VIP用户组:发帖.回帖.删帖.浏览权限 高级会员组:发帖 ...

  6. angular1.x的简单介绍(二)

    首先还是要强调一下DI,DI(Denpendency Injection)伸手获得,主要解决模块间的耦合关系.那么模块是又什么组成的呢?在我看来,模块的最小单位是类,多个类的组合就是模块.关于在根模块 ...

  7. Linux的简单介绍和常用命令的介绍

    Linux的简单介绍和常用命令的介绍 本说明以Ubuntu系统为例 Ubuntu系统的安装自行百度,或者参考http://www.cnblogs.com/CoderJYF/p/6091068.html ...

  8. iOS-iOS开发简单介绍

    概览 终于到了真正接触IOS应用程序的时刻了,之前我们花了很多时间去讨论C语言.ObjC等知识,对于很多朋友而言开发IOS第一天就想直接看到成果,看到可以运行的IOS程序.但是这里我想强调一下,前面的 ...

  9. iOS开发多线程篇—多线程简单介绍

    iOS开发多线程篇—多线程简单介绍 一.进程和线程 1.什么是进程 进程是指在系统中正在运行的一个应用程序 每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内 比如同时打开QQ.Xcod ...

随机推荐

  1. Sublime Text3 快捷键汇总及设置快捷键配置环境变量

    Ctrl+D 选词 (反复按快捷键,即可继续向下同时选中下一个相同的文本进行同时编辑)Ctrl+G 跳转到相应的行Ctrl+J 合并行(已选择需要合并的多行时)Ctrl+L 选择整行(按住-继续选择下 ...

  2. css实现隐藏多余溢出文字并显示省略号

    <meta charset="utf-8" /> <style> .txt{ width:200px; border:1px solid #ddd; ove ...

  3. Python基础——条件判断

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 到目前为止,Python基础系列的文章中的程序都是一条一条语句顺序执行的.在本章中,我会重点介绍让程序选择是否执行语 ...

  4. Shiro 核心功能案例讲解 基于SpringBoot 有源码

    Shiro 核心功能案例讲解 基于SpringBoot 有源码 从实战中学习Shiro的用法.本章使用SpringBoot快速搭建项目.整合SiteMesh框架布局页面.整合Shiro框架实现用身份认 ...

  5. Activiti获取ProcessEngine的三种方法

    1.通过ProcessEngineConfiguration获取 package cn.lonecloud.mavenActivi; import org.activiti.engine.Proces ...

  6. 阿里云CentOS 7系统挂载SSD云盘的教程_Linux

    一.查看SSD云盘 sudo fdisk -l Disk /dev/vda: 42.9 GB, 42949672960 bytes, 83886080 sectors Units = sectors ...

  7. 为什么要使用Docker?

    作为一种新兴的虚拟化方式,Docker跟传统的虚拟化方式相比具有众多的优势. 更高效的利用系统资源 由于容器不需要进行硬件虚拟及运行完整操作系统等额外开销,Docker对系统资源的利用率更高.无论是应 ...

  8. hdu1425 哈希技术

    常用的技巧,把每个数字分别对应数组的下标,如果存在小于零的数字,就统一加一个数使得都能映射到一个下标上去. AC代码: #include<cstdio> #include<cstri ...

  9. UVA - 11624 多点bfs [kuangbin带你飞]专题一

    题意:某人身陷火场,总有k个点着火,着火点可向四周扩散,问此人能否逃离. 思路:可能有多个着火点,以这些着火点作为起点进行bfs,得到整个火场的最短距离,然后又以人所在坐标作为起点进行bfs,得到该人 ...

  10. JDBC批量插入优化addbatch

    // 获取要设置的Arp基准的List后,插入Arp基准表中 public boolean insertArpStandardList(List<ArpTable> list) { Con ...