题面戳我

sol

千万!千万!不要理解错题意了!最长K可重,不是说线段最多K可重!你以为计算几何?

原文:使得在\(x\)轴上的任何一点\(p\),\(S\)中与直线\(x=p\)相交的开线段个数不超过\(k\)。

所以这题就和最长K可重区间集问题是一样的!

只是这里有个坑。线段可以垂直\(x\)轴对吧(废话),那么你直接离散化然后连边就会连出一个负边权的自!环!,然后spfa呵呵呵。死掉了。

为了解决这一问题,我们把所有横坐标都扩大两倍,然后左端点++。对于那些左右端点相等的线段,就把左端点++改为左端点--即可。这样既可以保证连接不形成环,且和原本的意义相同。

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N = 1005;
const int inf = 1e9;
struct edge{int to,next,w,cost;}a[N<<2];
int n,k,l[N],r[N],x[N],y[N],val[N],o[N],len,s,t,head[N],cnt=1,dis[N],vis[N],pe[N];
long long ans;
queue<int>Q;
long long sqr(int x){return 1ll*x*x;}
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
void link(int u,int v,int w,int cost)
{
a[++cnt]=(edge){v,head[u],w,cost};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],0,-cost};
head[v]=cnt;
}
bool spfa()
{
memset(dis,63,sizeof(dis));
dis[s]=0;Q.push(s);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
if (a[e].w&&dis[v]>dis[u]+a[e].cost)
{
dis[v]=dis[u]+a[e].cost;pe[v]=e;
if (!vis[v]) vis[v]=1,Q.push(v);
}
}
vis[u]=0;
}
if (dis[t]==dis[0]) return false;
int sum=inf;
for (int i=t;i!=s;i=a[pe[i]^1].to)
sum=min(sum,a[pe[i]].w);
ans-=1ll*sum*dis[t];
for (int i=t;i!=s;i=a[pe[i]^1].to)
a[pe[i]].w-=sum,a[pe[i]^1].w+=sum;
return true;
}
int main()
{
n=gi();k=gi();
for (int i=1;i<=n;i++)
{
l[i]=gi(),x[i]=gi(),r[i]=gi(),y[i]=gi();
val[i]=sqrt(sqr(r[i]-l[i])+sqr(y[i]-x[i]));
l[i]*=2;r[i]*=2;
if (l[i]==r[i]) l[i]--;
else l[i]++;
o[++len]=l[i];o[++len]=r[i];
}
sort(o+1,o+len+1);
len=unique(o+1,o+len+1)-o-1;
s=len+1;t=len+2;
link(s,1,k,0);link(len,t,k,0);
for (int i=1;i<len;i++)
link(i,i+1,k,0);
for (int i=1;i<=n;i++)
{
l[i]=lower_bound(o+1,o+len+1,l[i])-o;
r[i]=lower_bound(o+1,o+len+1,r[i])-o;
link(l[i],r[i],1,-val[i]);
}
while (spfa()) ;
printf("%lld\n",ans);
return 0;
}

【网络流24题22】最长k可重线段集问题的更多相关文章

  1. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  2. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  3. *LOJ#6227. 「网络流 24 题」最长k可重线段集问题

    $n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...

  4. 网络流24题之最长k可重线段集问题

    对于每个线段拆成两个点,如同之前一样建图,由于可能出现垂直于x轴的 所以建图由i指向i~ 继续最小费用最大流 By:大奕哥 #include<bits/stdc++.h> using na ...

  5. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  6. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  7. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  8. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  9. 网络流24题:最长 k 可重区间集问题题解

    最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...

  10. 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集

    题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...

随机推荐

  1. mac攻略(4) -- 使用brew配置php7开发环境(mac+php+apache+mysql+redis)

    [http://www.cnblogs.com/redirect/p/6131751.html] 网上有很多文章都是错误的,因为是copy别人的,作者没有自己亲测,不仅不能给新手提供帮助,还会产生严重 ...

  2. win7连接共享打印机

    1. 保证目标电脑启用共享.打印机驱动安装正常 2. 目标电脑进入"设备和打印机" 3. 右键要共享的打印机 - 打印机属性 -共享此打印机 4. 其他电脑打印时,选择其他打印机, ...

  3. [求助][SPOJ MARIOGAM]-高斯消元(内含标程,数据等)

    小蒟蒻开始做概率的题之后,遇到了这道题,然而,他发现自己的程序调试了无数次也无法通过,系统总是返回令人伤心的WA, 于是,他决定把这一天半的时间收集到的资料放在网上, 寻求大家的帮助, 也可以节省后来 ...

  4. JAVA浮点数计算精度损失底层原理与解决方案

    浮点数会有精度损失这个在上大学的时候就已经被告知,但是至今完全没有想明白其中的原由,老师讲的时候也是一笔带过的,自己也没有好好琢磨.终于在工作的时候碰到了,于是google了一番. 问题: 对两个do ...

  5. 用Composer获取第三方资源总是失败咋办?

    凉拌!!! 不不不,哥可是一个有追求的人,没那么容易放弃的! 所以我选择用中国全量镜像,https://pkg.phpcomposer.com/ 使用方法: 对,就是命令行方法,我最喜欢的方法!!! ...

  6. UVA1374 IDA*

    我刚开始的思路就是:用启发函数max * pow(2 , maxd - d) < n直接去判断,两个for循环往数组延伸,找到n为止,可是速度太慢.刘汝佳大哥说的直接使用新延伸出来的数,这样确实 ...

  7. 关于MYCAT 读写分离,与只读事务的问题.

    习惯性为了复用mysql连接,喜欢加上@Transactional(readOnly = true) 只读事务,很多零碎的查询下,速度会快一些,也环保一些. 最近用mycat做了读写分离,其中一个查询 ...

  8. 通讯服务类API调用的代码示例合集:短信服务、手机号归属地查询、电信基站查询等

    以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 短信服务:通知类和验证码短信,全国三网合一通道,5秒内到达,费用低 ...

  9. 使用基于Android网络通信的OkHttp库实现Get和Post方式简单操作服务器JSON格式数据

     目录 前言 1 Get方式和Post方式接口说明 2 OkHttp库简单介绍及环境配置 3 具体实现 前言 本文具体实现思路和大部分代码参考自<第一行代码>第2版,作者:郭霖:但是文中讲 ...

  10. ubuntu配置

    首先就是Ubuntu的更新源问题,需要更改,否则更新不了. 其次就是Securecrt的远程登陆问题,windows主机和ubuntu虚拟机如果能通信,要求在同一网段上,而ubuntu是动态加载,需要 ...