1376 最长递增子序列的数量


首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值

但我要练习$CDQ$

$LIS$是二维偏序问题,偏序关系是$i<j,\ a_i<a_j$

$CDQ$分治可以解决偏序问题

$CDQ(l,r)\ :$

$CDQ(l,mid)$

$[l,r]$按$a$排序,$[l,mid] \rightarrow\ [mid+1,r]$

$CDQ(mid+1,r)$

这个排序没法用归并排序,因为你要用最优的$f[k],k\in [mid+1,r]$来更新$k$的右面,必须先$[l,mid] \rightarrow\ [mid+1,r]$获得最优的$f[k]$才行,而那些计数类问题就不需要了

我尝试了很多写法,最后分治里还是采用了间接排序,这样不影响$i<j$这个关系

[2017-02-25]不排序用一个维护区间最大值的数据结构也可以,更新的时候取$0...a[i]$的最大$f$值(这样你还分治什么啊?!)

注意严格递增

于是$LIS$现在可以用$CDQ$水过啦!!!

其实二维的最长上升子序列用$CDQ$分治是没有意义的,无论如何都比数据结构维护多一个$log$

该死一下午就写这玩意了

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=5e4+,MOD=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,a[N],ref[N];
inline bool cmp(int x,int y){return a[x]==a[y]?x>y:a[x]<a[y];}//strict
inline void mod(int &x){if(x>=MOD) x-=MOD;}
int f[N],g[N];
void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>;
CDQ(l,mid);
for(int i=l;i<=r;i++) ref[i]=i;
sort(ref+l,ref+r+,cmp);
int mx=,cnt=;
for(int i=l;i<=r;i++){
int id=ref[i];
if(id<=mid){
if(f[id]>mx) mx=f[id],cnt=g[id];
else if(f[id]==mx) mod(cnt+=g[id]);
}else{
if(mx+>f[id]) f[id]=mx+,g[id]=cnt;
else if(f[id]==mx+) mod(g[id]+=cnt);
}
}
CDQ(mid+,r);
}
int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=read(),f[i]=g[i]=;
CDQ(,n);
int mx=,cnt=;
for(int i=;i<=n;i++){
if(f[i]>mx) mx=f[i],cnt=g[i];
else if(f[i]==mx) mod(cnt+=g[i]);
}
printf("%d",cnt%MOD);
}

51NOD 1376 最长递增子序列的数量 [CDQ分治]的更多相关文章

  1. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  2. 51Nod 1376 最长递增子序列的数量 —— LIS、线段树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空 ...

  3. 51nod 1376 最长递增子序列的数量(不是dp哦,线段树 +  思维)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最 ...

  4. 51Nod 1376 最长递增子序列的数量 (DP+BIT)

    题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && ...

  5. 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!

    51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...

  6. 【51nod】1376 最长递增子序列的数量

    数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个. ...

  7. 51nod1376 最长递增子序列的数量

    O(n2)显然超时.网上找的题解都是用奇怪的姿势写看不懂TAT.然后自己YY.要求a[i]之前最大的是多少且最大的有多少个.那么线段树维护两个值,一个是当前区间的最大值一个是当前区间最大值的数量那么我 ...

  8. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  9. 51nod 1218 最长递增子序列 | 思维题

    51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...

随机推荐

  1. nth-child()选择器小结

    之前也用到过nth-child,只是当时理解的不够透彻.今天回过头去看这个知识点时,发现了一个易错点. 浏览器支持情况: 所有主流浏览器都支持nth-child()选择器,除了IE8及更早的版本. 下 ...

  2. 语义化版本控制规范(SemVer)

    摘自: http://semver.org/lang/zh-CN/ 简介 在软件管理的领域里存在着被称作"依赖地狱"的死亡之谷,系统规模越大,加入的套件越多,你就越有可能在未来的某 ...

  3. $.extend()方法和(function($){...})(jQuery)详解

    1.    JS中substring与substr的区别 之前在项目中用到substring方法,因为C#中也有字符串的截取方法Substring方法,当时也没有多想就误以为这两种方法的使用时一样的. ...

  4. zookeeper命令行操作

    创建 #[-s] 顺序 #[-e] 临时节点 #path 节点 #data 该节点存储的数据 #acl 证书 create [-s] [-e] path data acl -s或-e指定节点特性:顺序 ...

  5. dede表前缀不定时,查询表#@__archives

    $query = "SELECT arc.*,tp.typedir,tp.typename,               tp.isdefault,tp.defaultname,tp.nam ...

  6. 邓_phpcms_数据库

    phpcms v9 数据表结构 在线版 PHPCMS V9 数据结构 (2010-12-28) 表 1 : v9_admin 管理员表 字段 类型 Null 默认 额外 注释 userid mediu ...

  7. 用CSS实现“表格布局”

    当我们进行浮动布局时,会发现存在着非浮动元素与浮动元素的底部难以对齐的情况,这就是浮动布局的缺陷.因此,过去的前端工作者曾利用<table>以实现"表格布局".因为表格 ...

  8. Java中泛型数组创建总结

    在java中,可以声明一个泛型数组,不能通过直接通过T[] tarr=new T[10]的方式来创建数组,最简单的方式便是通过Array.newInstance(Classtype,int size) ...

  9. SSH的jar包下载地址

    spring http://repo.spring.io/libs-release-local/org/springframework/spring/ 条理清晰的搭建SSH环境之添加所需jar包 ht ...

  10. jenkins插件之如何优雅的生成版本号

    一.简介 在持续集成中,版本管理是非常重要的一部分,本章将介绍如何Version Number Plug插件生成优雅的版本号. 二.安装 系统管理-->插件管理 搜索 Version Numbe ...