题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集。并判断最大独立集是否唯一

思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子树中,不选择第i个节点的方案是否唯一。同理,d[i][1]和f[i][1]就是选择第i个节点的情况。

  状态转移:d[i][0] =

∑max(d[v][0], d[v][1]), d[i][1] =
∑d[v][0];

  唯一性的转移方程见代码:

if(k == 1) { //选择节点u
			d[u][k] += dfs(v, 0); //不选择子节点
			if(!f[v][0]) f[u][k] = 0;
		}
		else {
			d[u][k] += max(dfs(v, 1), dfs(v, 0));
			if(d[v][0] == d[v][1]) f[u][k] = 0;
			else if(d[v][0] > d[v][1] && !f[v][0]) f[u][k] = 0;
			else if(d[v][1] > d[v][0] && !f[v][1]) f[u][k] = 0;
		}



AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<utility>
#include<string>
#include<iostream>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define eps 1e-10
#define inf 0x3f3f3f3f
#define PI pair<int, int>
const int maxn = 200 + 5;
map<string, int>name;
vector<int>son[maxn];
int cnt, d[maxn][2], f[maxn][2];

int getID(string &p) {
	if(!name.count(p)) name[p] = cnt++;
	return name[p];
}

int dfs(int u, int k) {
	f[u][k] = 1;
	d[u][k] = k;
	int n = son[u].size();
	for(int i = 0; i < n; ++i) {
		int v = son[u][i];
		if(k == 1) { //选择节点u
			d[u][k] += dfs(v, 0); //不选择子节点
			if(!f[v][0]) f[u][k] = 0;
		}
		else {
			d[u][k] += max(dfs(v, 1), dfs(v, 0));
			if(d[v][0] == d[v][1]) f[u][k] = 0;
			else if(d[v][0] > d[v][1] && !f[v][0]) f[u][k] = 0;
			else if(d[v][1] > d[v][0] && !f[v][1]) f[u][k] = 0;
		}
	}
	return d[u][k];
}

int main() {
	int n, root;
	string boss, kid;
	while(scanf("%d", &n) == 1 && n) {
		for(int i = 0; i < n; ++i) son[i].clear();
		name.clear();
		cnt = 0;
		cin >> boss;
		getID(boss);
		for(int i = 1; i < n; ++i) {
			cin >> kid >> boss;
			int par = getID(boss), kids = getID(kid);
			son[par].push_back(kids);
		}
		int ans = max(dfs(0, 0), dfs(0, 1));
		printf("%d ", ans);
		int only = 1;
		if(d[0][0] == d[0][1]) only = 0;
		else if(d[0][0] > d[0][1] && !f[0][0]) only = 0;
		else if(d[0][1] > d[0][0] && !f[0][1]) only = 0;
		if(only) printf("Yes\n");
		else printf("No\n");
	}

	return 0;
}

如有不当之处欢迎指出!

UVA - 1220 Party at Hali-Bula 树的最大独立集的更多相关文章

  1. UVa 1220 Hali-Bula的晚会(树的最大独立集)

    https://vjudge.net/problem/UVA-1220 题意: 公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司.要求选尽量多的人,但不能同时选择一个人和他的直 ...

  2. POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

    POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...

  3. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. POJ 2342 树的最大独立集

    题意:在树的最大独立集的基础上,加上权值.求最大. 分析: 采用刷表的方式写记忆化,考虑一个点选和不选,返回方式pair 型. 首先,无根树转有根树,dp(root). 注意的是:u不选,那么他的子节 ...

  5. POJ 3342 Party at Hali-Bula (树形dp 树的最大独立集 判多解 好题)

    Party at Hali-Bula Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5660   Accepted: 202 ...

  6. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  7. HDU - 1520 Anniversary party (树的最大独立集)

    Time limit :1000 ms :Memory limit :32768 kB: OS :Windows There is going to be a party to celebrate t ...

  8. UVa 1220 (树的最大独立集) Party at Hali-Bula

    题意: 有一棵树,选出尽可能多的节点是的两两节点不相邻,即每个节点和他的子节点只能选一个.求符合方案的最大节点数,并最优方案判断是否唯一. 分析: d(u, 0)表示以u为根的子树中,不选u节点能得到 ...

  9. Uva 1220,Hali-Bula 的晚会

    题目链接:https://uva.onlinejudge.org/external/12/1220.pdf 题意: 公司n个人,形成一个数状结构,选出最大独立集,并且看是否是唯一解. 分析: d(i) ...

随机推荐

  1. java乱码详解(java中byte与char的转换)

    转自:http://hi.baidu.com/%C6%F3%D2%B5%BC%D2%D4%B0/blog/item/825a4858d6248e8b810a181a.html   java byte与 ...

  2. 前端自动化测试神器-Katalon的基础用法

    前言 最近由于在工作中需要通过Web端的功能进行一次大批量的操作,数据量大概在5000左右,如果手动处理, 完成一条数据的操作用时在20秒左右的话,大概需要4-5个人/天的工作量(假设一天8小时的工作 ...

  3. android EditText与TextView几个常用的属性

    android:maxLength="100"输入框最多输入的字数. android:maxEms="10"每行最多输入字符个数 android:textcol ...

  4. Mybatis (一)

    1 DAO层框架 框架:是一种整体的解决方案. 1.1 JDBC的步骤 1.2 Hibernate执行的步骤 1.3 MyBaits 2 Mybatis简介 Mybatis是支持定制化SQL.存储过程 ...

  5. Linux中的shell到底是什么

    (引自:https://zhidao.baidu.com/question/557066905.html) [一] shell的含义: 首先shell的英文含义是"壳": 它是相对 ...

  6. 【转】DEM DTM DLG DRG DOM DSM

    pasting DTM DLG DRG DOM DSM" title="[转载]DEM DTM DLG DRG DOM DSM" height="477&quo ...

  7. iOS导出ipa包时四个选项的意义

    1. Save for iOS App Store Deployment 保存到本地 准备上传App Store 或者在越狱的iOS设备上使用 2. Save for Ad Hoc Deploymen ...

  8. 系统uid在1-499的原因

    1.因为是保留给系统使用的UID,为了与用户设置的账户区分,防止冲突. 2.并没有其他特别的意义, 3.也叫作虚拟用户,除了0之外,所有的UID在使用上并没有任何区别. 4.linux中文件和程序都要 ...

  9. tensorflow Image 解码函数

    觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.image.decode_png(contents, channels=None, name=None) Decode a PNG-enc ...

  10. FTP工具

    上传本地资源到FTP服务器,可以使用LeapFTP软件.左侧为本地资源,右侧为FTP资源.输入用户名,密码,连接后直接拖动即可. 为本地资源建立FTP,可以方便进行设备升级.文件传输等.