题目链接

题意

其实就是求

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)
\]

思路

建议先看一下此题的一个弱化版

推一下式子

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)
\]

\[= \sum\limits_{k=1}^nk\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=k]
\]

\[=\sum\limits_{k=1}^nk\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{n}{k}}[gcd(i,j)=1]
\]

\[=\sum\limits_{k=1}^nk\sum\limits_{i=1}^{\frac{n}{k}}2\varphi(i)-1
\]

设\(\phi(i)=\varphi(1)+\varphi(2)+...+\varphi(i)\)

则原式

\[=\sum\limits_{i=1}^ni(2\phi(\frac{n}{i})-1)
\]

然后就可以数论分块啦。

至于怎么比较快的求\(\phi(i)\),基本的杜教筛喽。。

代码

//loj6074
/*
* @Author: wxyww
* @Date: 2019-03-30 12:43:48
* @Last Modified time: 2019-03-30 19:43:10
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7,N = 1000000 + 100,inv2 = (mod + 1) / 2; ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
map<ll,ll>ma;
ll n,sum[N];
int dis[N],vis[N],js;
int dls(ll x) {
if(x <= 1000000) return sum[x];
if(ma[x]) return ma[x];
ll ret = 1ll * x % mod * ((x + 1) % mod) % mod * inv2 % mod;
for(ll l = 2,r;l <= x;l = r + 1) {
r = x / (x / l);
ret -= 1ll * (r - l + 1) % mod * dls(x / l) % mod;
ret = (ret + mod) % mod;
}
return ma[x] = ret;
}
void pre() {
sum[1] = 1;vis[1] = 1;
int NN = min(n,1000000ll);
for(int i = 2;i <= NN;++i) {
if(!vis[i]) {
dis[++js] = i;
sum[i] = i - 1;
}
for(int j = 1;j <= js && dis[j] * i <= NN;++j) {
vis[dis[j] * i] = 1;
if(i % dis[j] == 0) {
sum[dis[j] * i] = sum[i] * dis[j] % mod; break;
}
sum[dis[j] * i] = (dis[j] - 1) * sum[i] % mod;
}
sum[i] += sum[i - 1];
sum[i] %= mod;
} }
signed main() {
n = read();
pre();
ll ans = 0;
for(ll l = 1,r;l <= n;l = r + 1) {
r = n / (n / l);
ans = (ans + (1ll * (r - l + 1) % mod * ((r + l) % mod) % mod * inv2 % mod) % mod * ((2ll * dls(n / l) % mod) - 1 + mod) % mod) % mod;
}
cout<<ans;
return 0;
}

51nod1237 最大公约数之和的更多相关文章

  1. 51nod1237 最大公约数之和 V3

    题意:求 解: 最后一步转化是因为phi * I = Id,故Id * miu = phi 第二步是反演,中间省略了几步... 然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi ...

  2. [51nod1237] 最大公约数之和 V3(杜教筛)

    题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...

  3. [51nod1237]最大公约数之和V3

    $\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\\$ $=\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\varepsilo ...

  4. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  5. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  6. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  7. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  8. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  9. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

随机推荐

  1. springMVC实现增删改查

    首先需要准备好一张数据库表我这里用emp这张表:具体代码: /* SQLyog 企业版 - MySQL GUI v8.14 MySQL - 5.1.73-community ************* ...

  2. vuex的用法

    https://segmentfault.com/a/1190000015782272

  3. 学习笔记—MySQL基础

    数据库的介绍 mysql数据库介绍 开放源码的轻量级关系型数据库管理系统,体积小.速度快.操作便捷. 数据库的启动和连接 mysql数据库启动 在终端输入以下命令,启动mysql服务器 service ...

  4. mac git从代码仓库克隆代码,修改并上传

    1:添加本地秘钥到代码仓库中 open ~/ .ssh 以github为例: mac 命令行输入open ~/ .ssh,打开id_rsa.pub文件中的内容,复制到github->settin ...

  5. Java日期的一些基本处理

    今天工作中用到一些日期的处理.这里做一点浅显的整理. 1.日期的加减: 日期加减一般用到Calendar这个类比较好.这样不用处理12月加一个月和28.30.31.加一天等问题 String last ...

  6. 基于FPM制作nginx RPM包

    目录 环境 配置 FPM安装 环境 系统 其它 CentOS 7.5 需提前配置好epel 配置 [root@localhost ~]# yum clean all && yum ma ...

  7. JAVA EE获取浏览器和操作系统信息

    一.原理说明:  1. 浏览器访问服务端时,Http请求头上会带上客户端一些信息,可通过"user-agent"获取. //java获取方法如下,其他语言也有自己获取方法 Stri ...

  8. 什么是validationQuery

    validationQuery是用来验证数据库连接的查询语句,这个查询语句必须是至少返回一条数据的SELECT语句.每种数据库都有各自的验证语句,下表中收集了几种常见数据库的validationQue ...

  9. ThreadLocal<T>学习总结

    public class ThreadLocalTest { /** * @param * @Author: xdj * @Date: 2019/4/12 10:16 * @Description: ...

  10. SQL insert into select 语句

    遇到权限数据变更的需要批量到别的平台, 在175平台添加一个权限需要, 批量到别的现有平台, 以后的建站, 会把sql放到自动建站里面; 权限的 insert into select 表一: `ous ...