题目链接

题意

其实就是求

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)
\]

思路

建议先看一下此题的一个弱化版

推一下式子

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)
\]

\[= \sum\limits_{k=1}^nk\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=k]
\]

\[=\sum\limits_{k=1}^nk\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{n}{k}}[gcd(i,j)=1]
\]

\[=\sum\limits_{k=1}^nk\sum\limits_{i=1}^{\frac{n}{k}}2\varphi(i)-1
\]

设\(\phi(i)=\varphi(1)+\varphi(2)+...+\varphi(i)\)

则原式

\[=\sum\limits_{i=1}^ni(2\phi(\frac{n}{i})-1)
\]

然后就可以数论分块啦。

至于怎么比较快的求\(\phi(i)\),基本的杜教筛喽。。

代码

//loj6074
/*
* @Author: wxyww
* @Date: 2019-03-30 12:43:48
* @Last Modified time: 2019-03-30 19:43:10
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7,N = 1000000 + 100,inv2 = (mod + 1) / 2; ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
map<ll,ll>ma;
ll n,sum[N];
int dis[N],vis[N],js;
int dls(ll x) {
if(x <= 1000000) return sum[x];
if(ma[x]) return ma[x];
ll ret = 1ll * x % mod * ((x + 1) % mod) % mod * inv2 % mod;
for(ll l = 2,r;l <= x;l = r + 1) {
r = x / (x / l);
ret -= 1ll * (r - l + 1) % mod * dls(x / l) % mod;
ret = (ret + mod) % mod;
}
return ma[x] = ret;
}
void pre() {
sum[1] = 1;vis[1] = 1;
int NN = min(n,1000000ll);
for(int i = 2;i <= NN;++i) {
if(!vis[i]) {
dis[++js] = i;
sum[i] = i - 1;
}
for(int j = 1;j <= js && dis[j] * i <= NN;++j) {
vis[dis[j] * i] = 1;
if(i % dis[j] == 0) {
sum[dis[j] * i] = sum[i] * dis[j] % mod; break;
}
sum[dis[j] * i] = (dis[j] - 1) * sum[i] % mod;
}
sum[i] += sum[i - 1];
sum[i] %= mod;
} }
signed main() {
n = read();
pre();
ll ans = 0;
for(ll l = 1,r;l <= n;l = r + 1) {
r = n / (n / l);
ans = (ans + (1ll * (r - l + 1) % mod * ((r + l) % mod) % mod * inv2 % mod) % mod * ((2ll * dls(n / l) % mod) - 1 + mod) % mod) % mod;
}
cout<<ans;
return 0;
}

51nod1237 最大公约数之和的更多相关文章

  1. 51nod1237 最大公约数之和 V3

    题意:求 解: 最后一步转化是因为phi * I = Id,故Id * miu = phi 第二步是反演,中间省略了几步... 然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi ...

  2. [51nod1237] 最大公约数之和 V3(杜教筛)

    题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...

  3. [51nod1237]最大公约数之和V3

    $\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\\$ $=\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\varepsilo ...

  4. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  5. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  6. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  7. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  8. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  9. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

随机推荐

  1. Java工具类——通过配置XML验证Map

    Java工具类--通过配置XML验证Map 背景 在JavaWeb项目中,接收前端过来的参数时通常是使用我们的实体类进行接收的.但是呢,我们不能去决定已经搭建好的框架是怎么样的,在我接触的框架中有一种 ...

  2. 关于Fragment里面嵌套fragment

    今天看到一篇好文章 https://www.2cto.com/kf/201609/545979.html 转载过来记录一下,往后需要的时候可以随时查看: 接下来进入正题: 动态fragment的使用 ...

  3. K60用IRA通过j-link下载失败,解决方法

    K60在用飞思卡尔原厂的例程时,例程编译时没有问题,但是烧写时不成功,出现以下提示,请问该如何解决这个问题?提示1.Miss or malformed flash loader specificati ...

  4. 小程序开发基础-view视图容器

    view 视图容器. // wxml <view class="section"> <view class="section__title"& ...

  5. zabbix监控交换机状态

    1.在Zabbix中添加主机 输入名称.群组和交换机IP(交换机要开启snmp) 2.创建监控项 输入OID和其它信息(键值随便填,但是不能和系统内的键值重复)OID获取方法可查看上一篇文章:http ...

  6. Linux、CentOS7下报错-bash: TMOUT: readonly variable怎么办?

    一.Linux操作系统版本 二.背景:在项目中当我们配置好JDK环境变量.Tomcat环境变量,通过source /etc/profile使环境变量生效时,发现会报错,如图 三.解决 个人尚不知出现原 ...

  7. animation动画案例

    最近一直苦恼做一个banner的进度条,原先用js改变width值,但明显卡顿.后来用了animation,超级好用. <!DOCTYPE html> <html lang=&quo ...

  8. nginx学习路线

    nginx:熟透,配置.rewrite.黑白名单.脚本.代理.优化等

  9. flask wtforms组件详解

    一.简介 在flask内部并没有提供全面的表单验证,所以当我们不借助第三方插件来处理时候代码会显得混乱,而官方推荐的一个表单验证插件就是wtforms.wtfroms是一个支持多种web框架的form ...

  10. TypeError: argument 1 must be an integer, not _subprocess_handle/OSError: [WinError 87]

    Error Msg: Traceback (most recent call last): File "c:\python27\lib\site-packages\celery\worker ...