CF997C Sky Full of Stars
计数好题
容斥式子:发现只要每个钦定方案的贡献都考虑到再配上容斥系数就是对的
O(n^2)->O(n)
把麻烦的i=0,j=0特殊考虑下
剩下的,先把麻烦的东西化简干净
然后枚举一维i,剩下的二项式定理!!!!
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=1e6+;
const int mod=;
int ad(int x,int y){
return (x+y)>=mod?x+y-mod:x+y;
}
int qm(int x,ll y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int inv[N],jie[N];
int C(int n,int m){
if(n<||m<||n<m) return ;
return (ll)jie[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
int n;rd(n);
ll ans=;
jie[]=;
for(reg i=;i<=n;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[n]=qm(jie[n],mod-);
for(reg i=n-;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
for(reg i=;i<=n;++i){
ans=ad(ans,(i+)&?mod-(ll)C(n,i)*qm(,(ll)n*(n-i)+i)%mod:(ll)C(n,i)*qm(,(ll)n*(n-i)+i)%mod);
}
ans=ans*%mod;
ll sum=;
ll base=;
for(reg i=;i<=n-;++i){
sum=ad(sum,(i+)&?mod-(ll)C(n,i)*ad(qm(ad(,mod-base),n),mod-qm(mod-base,n))%mod:(ll)C(n,i)*ad(qm(ad(,mod-base),n),mod-qm(mod-base,n))%mod);
base=base*%mod;
}
ans=(ans+sum*)%mod;
ot(ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/
CF997C Sky Full of Stars的更多相关文章
- 【题解】CF997C Sky Full of Stars
[题解]CF997C Sky Full of Stars 为什么我的容斥原理入门题是这道题????????? \(Part-1\)正向考虑 直接考虑不合法合法的方案吧 所以我们设行有\(i\),列有\ ...
- CF997C Sky Full of Stars 数论
正解:容斥 解题报告: 传送门! 两个方法,分别港下QAQ 先说第一种 首先要推出式子,就∑2*C(i,n)*(-1)i+1*3i*3n*n-n+3*∑∑(-1)i+j+1*C(i,n)*C(j,n) ...
- cf997C. Sky Full of Stars(组合数 容斥)
题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...
- codeforces 997C.Sky Full of Stars
题目链接:codeforces 997C.Sky Full of Stars 一道很简单(?)的推式子题 直接求显然不现实,我们考虑容斥 记\(f(i,j)\)为该方阵中至少有\(i\)行和\(j\) ...
- Codeforces 997 C - Sky Full of Stars
C - Sky Full of Stars 思路: 容斥原理 题解:http://codeforces.com/blog/entry/60357 注意当i > 1 且 j > 1,是同一种 ...
- [CF997C]Sky Full of Stars_二项式反演_等比数列_容斥原理
Sky Full of Stars 题目链接:http://codeforces.com/problemset/problem/997/C 数据范围:略. 题解: 首先考虑拟对象,如果至少有一行完全相 ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- Codeforces997C Sky Full of Stars 【FMT】【组合数】
题目大意: 一个$n*n$的格子,每个格子由你填色,有三种允许填色的方法,问有一行或者一列相同的方案数. 题目分析: 标题的FMT是我吓人用的. 一行或一列的问题不好解决,转成它的反面,没有一行和一列 ...
- Codeforces.997C.Sky Full of Stars(容斥 计数)
题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或 ...
随机推荐
- MySQL数据连表查询思路
我们在网站开发中,涉及MySQL数据库查询时,常常需要将两个表或多个表联合起来进行查询数据,这就用到了MySQL中的JOIN函数. JOIN函数有三种,分别是: LEFT JOIN 左连接查询: 查 ...
- weblogic doc
BEA WebLogic Server 9.2 Documentation https://docs.oracle.com/cd/E13222_01/wls/docs92/index.html 8.1 ...
- 基于geotools的(两个)SHP要素变化提取方法预研
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1. 背景 我们用遥感的手段进行卫星特征提取.多幅影像间的特征变化提取的 ...
- ArcPy 拷贝数据库
使用Python脚本进行图形数据库的拷贝. 原始帖子地址:https://www.2cto.com/database/201302/187391.html 整理Python代码: # -*- codi ...
- Python数据描述与分析
在进行数据分析之前,我们需要做的事情是对数据有初步的了解,比如对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数据的形状等:而后才是对数据进行建模分析, ...
- Netty 核心内容之 编解码器
原文链接 Netty 核心内容之 编解码器 代码仓库地址 编解码器 我认为Netty 最棒的一点就是Netty 设计的编解码链,这一优秀的设计,可以很方便的实现二进制流->ByteBuf-> ...
- 路由刷rom手册
最近对家里面那5,6个路由器下手了. 路由列表:小米mini 2台. 优酷路由宝l1,tp wdr3320,tp wr840n, 友华wr1200js,小米路由r1n 步骤: 1. 想办法开启ssh ...
- 共创力董事长杨学明先生受邀参加CED智慧大会!
2018年11月14日, 深圳市共创力咨询董事长.深圳市汇成研发管理咨询公司董事长杨学明先生受邀参加由深圳图书馆主办,深圳手讯视频承办的“倾听行业之声”2018第二届世界CED智慧大会,此次分享的主题 ...
- TestLink-Windows安装教程
TestLink-Windows安装教程 QQ群交流:585499566 一.这篇文章的目的 以后工作中要使用Testlink来管理测试的流程,需要在本地或者Testlink服务器上练习使用,在个人本 ...
- Kali Linux入坑之基本配置(2018.1)
我在?天前就决心如Kali的坑,然而安装kali呀vm tools呀更新呀弄了好几天.期间出现的各种问题在此汇总一下. 1.Kali的安装版本选择 在官网上看到的这么多Kali版本应该怎么选呢,在网上 ...