神经网络[]

一、起源与历史

1、与传统统计方法的区别

传统线性回归模型可通过最小平方方法获取知识并在回归系数存储知识。在此意义下,其为神经网络。实际上,您可以证明线性回归为特定神经网络的特殊个案。但是,线性回归具有严格模型结构和在学习数据之前施加的一组假设。

神经网络可以接近多种统计模型,并无需您预先假设因变量和自变量间的特定关系。

若因变量和自变量间实际为线性关系,神经网络结果应接近线性回归模型的结果;

若两者为非线性关系,神经网络将自动接近“正确”模型结构。

但是如果您正试图解释生成因变量和自变量间关系的基础过程,最好使用更传统的统计模型。但是,如果模型的可解释性并不重要,您可以使用神经网络更快获取良好模型结果。[]

2、多层感知器MLP的应用

两大重要的应用:特征选择(变量选择);预测。

因变量的取值范围很广。

       

如何提高训练速度:编码问题(多数“压缩”编码方法通常导致较差的拟合神经网络。如果您的网络培训进行很慢,尝试通过将类似的类别组合起来或删除具有极少见类别的个案以减少分类预测变量中的类别数目);

3、非线性分析的应用

有以下几种应用在非线性分析的方法:多层感知(MLP)、径向基函数(RBF)、SVM、广义回归神经网络(GRNN)和广义神经网络(GNN)。[]

四、径向基神经网络(RBFN)

全局逼近神经网络(BP)多网络所有隐含层、输出层变量进行赋权、认定阀值,学习速度慢,在实时预测中很难做到;

而径向基神经网络,是局部逼近,局部赋值与认定阀值,实际应用能力较强。

1、原理

径向基函数是一种类似母函数(简单函数),通过基函数来映射高维空间函数特征。就像是多项式可以通过x与x次方的方式,逼近某一函数一样。低维空间非线性可分的问题总可以映射高维空间(输入——隐含层是径向基层),使其在高维空间线性可分(隐含层——输出是线性函数层)。

输入——隐含层是径向基层(非线性),隐含层——输出是线性函数层。径向基层, 径向基神经元权重与输入层权重对比,相近的权重设定趋于1,偏离的权重设定趋于0(不起作用)。从而相近权重的输入变量激活了“隐含层——输出层”的权重。

RBFN看上去网络是全连接的,但实质上只有几个输入变量对指定的径向基层有贡献,所以是一个局部逼近的过程,训练速度比BP要快2-3个数量级。

RBFN比BP隐含层神经元要多,可以构成高维隐单元空间,只要隐含层神经元的数目足够多,就可以使输出层空间线性可分。

五、SPSS的R组件安装

使用PASW Statistics-R Essentials插件作为接口, 自动安装。

同时excel也支持了R语言的插件接入。[]

1、安装R组件[]

关于SPSS插件安装。

安装流程:

先安装   SPSS Statistics 21.0

再安装   SPSS Statistics Python Essentials 21.0(注意版本 2.7.x)

再安装   Scipy py 2.7 (务必对应 Python Essentials 版本 2.7.x) x64位必须用x64位的Scipy py 2.7 官方没有,第三方的可以。官方有第三方的链接。

再安装   Numpy py 2.7 (务必对应 Python Essentials 版本 2.7.x)x64位必须用x64位的Scipy py 2.7 官方没有,第三方的可以。官方有第三方的链接。

Scipy/Numpy官方地址: http://www.scipy.org/Download

再安装   PLS Extension Module 拷贝到位,将PLS.py和plscommand.xml放入SPSS安装文件夹下\extensions;或将PLS.py放入Python文件夹下Lib\site-packages,plscommand.xml放入\extensions

再安装   R 注意版本 2.14 (千万注意下载 R-2.14.2-win.zip )

后安装   SPSS Statistics R Essentials 安装时要找 R。

神经网络ANN——SPSS实现的更多相关文章

  1. 传统神经网络ANN训练算法总结

    传统神经网络ANN训练算法总结 学习/训练算法分类 神经网络类型的不同,对应了不同类型的训练/学习算法.因而根据神经网络的分类,总结起来,传统神经网络的学习算法也可以主要分为以下三类: 1)前馈型神经 ...

  2. 传统神经网络ANN训练算法总结 参考 。 以后研究

    http://blog.163.com/yuyang_tech/blog/static/21605008320146451352506/ 传统神经网络ANN训练算法总结 2014-07-04 17:1 ...

  3. 机器学习笔记之人工神经网络(ANN)

    人工神经网络(ANN)提供了一种普遍而且实际的方法从样例中学习值为实数.离散值或向量函数.人工神经网络由一系列简单的单元相互连接构成,其中每个单元有一定数量的实值输入,并产生单一的实值输出. 上面是一 ...

  4. 【机器学习】人工神经网络ANN

    神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以 ...

  5. 人工神经网络--ANN

    神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...

  6. 机器学习(1)_R与神经网络之Neuralnet包

    本篇博客将会介绍R中的一个神经网络算法包:Neuralnet,通过模拟一组数据,展现其在R中是如何使用,以及如何训练和预测.在介绍Neuranet之前,我们先简单介绍一下神经网络算法. 人工神经网络( ...

  7. OpenCV 之 神经网络 (一)

    人工神经网络(ANN) 简称神经网络(NN),能模拟生物神经系统对真实物体所作出的交互反应,是由具有适应性的简单单元(称为神经元)组成的广泛并行互连网络. 1  神经元 1.1  M-P 神经元 如下 ...

  8. opencv 车牌字符分割 ANN网络识别字符

    最近在复习OPENCV的知识,学习caffe的深度神经网络,正好想起以前做过的车牌识别项目,可以拿出来研究下 以前的环境是VS2013和OpenCV2.4.9,感觉OpenCV2.4.9是个经典版本啊 ...

  9. R语言 神经网络算法

    人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...

随机推荐

  1. 面向切面编程之手动JDK代理方式

    需求描述: 抽取dao层开启和提交事物交由代理类一并执行 分析: 假如UserDao接口中有很多方法,例如addUser().deleteUser().updateUser()等等,需要频繁的和数据库 ...

  2. ORACLE 建表语句(表名及字段名大写)

    ORACLE建表时如果表名或者字段名存在大小写同时存在的情况下,默认为区分大小写,此时在select/updata等操作时需要在表名或者字段名上添加双引号,否则会报"视图不存在"的 ...

  3. javascript中的Date对象和Math对象

    1.Date对象 1.创建Date对象 var time1=new Date() 方法1:不指定参数 var time1=new Date(); alert(time1.toLocaleString( ...

  4. thinkphp使用自带webserver

    进入命令行,进入 tp5/public 目录后,输入如下命令:php -S localhost:8888 router.php 然后进行访问

  5. Oracle打印日历功能

    Oracle用SQL打印日历 1.1  打印当月日历 , D, NULL)) SUN, , D, NULL)) MON, , D, NULL)) TUE, , D, NULL)) WED, , D,  ...

  6. Hadoop学习笔记四

    一.fsimage,edits和datanode的block在本地文件系统中位置的配置 fsimage:hdfs-site.xml中的dfs.namenode.name.dir  值例如file:// ...

  7. 洛谷 [P1169] [ZJOI2007] 最大的正方形

    本题是一道求最大子矩阵的题,可以使用悬线法来做,因为是相邻的01矩阵,所以需要对悬线法进行改动. #include <iostream> #include <cstdio> # ...

  8. Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]

    CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...

  9. CF 716E. Digit Tree [点分治]

    题意:一棵树,边上有一个个位数字,走一条路径会得到一个数字,求有多少路径得到的数字可以整除\(P\) 路径统计一般就是点分治了 \[ a*10^{deep} + b \ \equiv \pmod P\ ...

  10. MySQL数据库基础

    MySQL数据库基础 本文的所有操作是基于CMD环境,MySQL通过在命令行中输入SQL语句对数据库进行操作.配置问题可参考<打通MySQL的操作权限>中的内容,该文算是针对前期的环境配置 ...