[机器学习Lesson3] 梯度下降算法
1. Gradient Descent(梯度下降)
梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。
1.1 线性回归问题应用
我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):

Outline
- 对θ0,θ1开始进行一些猜测
通常将初θ0,θ1初始化为0 - 在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改变使得J(θ0,θ1)变小,直到找到J的最小值或者局部最小值。
1.2 梯度算法工作原理

现在我们把这个图像想象为一座山,想像类似这样的景色 :公园中有两座山,想象一下你正站立在山的这一点上 站立在你想象的公园这座红色山上。在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己,我要在某个方向上,用小碎步尽快下山。如果我想要下山。如果我想尽快走下山,这些小碎步需要朝什么方向? 如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,大约是那个方向。
现在你在山上的新起点上 你再看看周围 然后再一次想想 我应该从什么方向迈着小碎步下山? 然后你按照自己的判断又迈出一步 往那个方向走了一步 然后重复上面的步骤。从这个新的点,你环顾四周并决定从什么方向将会最快下山。然后又迈进了一小步,并依此类推,直到你接近这里,直到局部最低点的位置。

现在想象一下,我们在刚才的右边一些的位置,对梯度下降进行初始化。想象我们在右边高一些的这个点。开始使用梯度下降。如果你重复上述步骤,停留在该点,并环顾四周,往下降最快的方向迈出一小步,然后环顾四周又迈出一步,然后如此往复。如果你从右边不远处开始梯度下降算法将会带你来到这个右边的第二个局部最优处。 如果从刚才的第一个点出发,你会得到这个局部最优解 但如果你的起始点偏移了一些,起始点的位置略有不同 你会得到一个非常不同的局部最优解。这就是梯度下降算法的一个特点。
1.3 梯度下降算法定义。

:=:赋值符号(Assignment).α:这里的α是一个数字,被称为学习速率(learning rate)。在梯度下降算法中,它控制了我们下山时会迈出多大的步子。- 微分项。
在梯度下降中,我们要更新θ0和θ1。当 j=0 和 j=1 时 会产生更新。所以你将更新J、θ0还有θ1。实现梯度下降算法的微妙之处是,在这个表达式中,如果你要更新这个等式,你需要同时更新 θ0和θ1。

θ0和θ1需要同步更新,右侧是非同步更新,错误。
1.4 梯度下降和代价函数
梯度下降是很常用的算法,它不仅被用在线性回归上 和线性回归模型还有平方误差代价函数。
当具体应用到线性回归的情况下,可以推导出一种新形式的梯度下降法方程:

- m:训练集的大小
- θ0与θ1同步改变
- xi和yi:给定的训练集的值(数据)。
我们已经分离出两例θj:θ0和θ1为独立的方程;在θ1中,在推导最后乘以Xi。以下是推导∂/∂θjJ(θ)的一个例子:

这一切的关键是,如果我们从猜测我们的假设开始,然后反复应用这些梯度下降方程,我们的假设将变得越来越精确。
因此,这只是原始成本函数J的梯度下降。这个方法是在每个步骤的每个训练集中的每一个例子,被称为批量梯度下降。注意,虽然梯度下降一般容易受到局部极小值的影响,但我们在线性回归中所提出的优化问题只有一个全局,没有其他局部最优解,因此梯度下降总是收敛(假定学习率α不是太大)到全局最小值。实际上,j是凸二次函数。这里是一个梯度下降的例子,它是为了最小化二次函数而运行的。

上面所示的椭圆是二次函数的轮廓图。也表明是通过梯度下降的轨迹,它被初始化为(48,30)。X在图(连接的直线)的标志,θ梯度穿过它收敛到最小的连续值。
本文资料部分来源于吴恩达 (Andrew Ng) 博士的斯坦福大学机器学习公开课视频教程。
[1]网易云课堂机器学习课程:
http://open.163.com/special/opencourse/machinelearning.html
[2]coursera课程:
https://www.coursera.org/learn/machine-learning/
[机器学习Lesson3] 梯度下降算法的更多相关文章
- ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ
ng机器学习视频笔记(二) --梯度下降算法解释以及求解θ (转载请附上本文链接--linhxx) 一.解释梯度算法 梯度算法公式以及简化的代价函数图,如上图所示. 1)偏导数 由上图可知,在a点 ...
- 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...
- 机器学习基础——梯度下降法(Gradient Descent)
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...
- 梯度下降算法的一点认识(Ng第一课)
昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法. ...
- Logistic回归Cost函数和J(θ)的推导(二)----梯度下降算法求解最小值
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在 ...
- 梯度下降算法对比(批量下降/随机下降/mini-batch)
大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...
- p1 批梯度下降算法
(蓝色字体:批注:绿色背景:需要注意的地方:橙色背景是问题) 一,机器学习分类 二,梯度下降算法:2.1模型 2.2代价函数 2.3 梯度下降算法 一,机器学习分类 无监督学习和监督学习 无监 ...
- 【转】梯度下降算法以及其Python实现
一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系? 为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...
- 梯度下降算法以及其Python实现
一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系? 为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...
随机推荐
- cookie 使用方法
//写cookies setCookie: function(name, value) { let days = 1 let exp = new Date() exp.setTime(exp.getT ...
- 关于无法下载android开发工具的解决方法
目前中国内地访问android网站需要FQ.不过这个网站http://www.androiddevtools.cn/提供了所有的和官网上一样的android开发工具和一些其他问题的解决方法.为andr ...
- C# 中的关键字整理
C#中的所有关键字大致可以分为保留关键字和上下文关键字两部分 快来看一下有没有不认识的吧 欢迎补充 保留关键字 abstract as base bool break byte case ...
- Spring源码学习:第0步--环境准备
Spring源码现在已托管于GitHub,相比于以前直接从官网下载一个压缩包的方式来说,确实方便了不少. GitHub地址:https://github.com/spring-projects/spr ...
- windows下安装mongoDB以及配置启动
1.下载MongoDB的windows版本,有32位和64位版本,根据系统情况下载,下载地址:http://www.mongodb.org/downloads 2.解压缩至D:/mongodb即可 3 ...
- Java值传递和引用传递
Java总是在讨论是传递还是引用传递,Java没有像C语言那样拥有指针,在看到引用传递和值传递很多的解释之后,更相信引用传递和值传递归根到底都是值传递,只不过引用传递的时候看上去很高大上,其实是把变量 ...
- Mycat 注解说明
我们知道MySQL 数据库有自己的SQL注解(hint),比如 use index.force index.ignore index 等都是会经常用到的,Mycat 作为一个数据库中间件,最重要的是 ...
- 线程池的submit和execute方法区别
线程池中的execute方法大家都不陌生,即开启线程执行池中的任务.还有一个方法submit也可以做到,它的功能是提交指定的任务去执行并且返回Future对象,即执行的结果.下面简要介绍一下两者的三个 ...
- Bower快速学习
什么是bower? Bower是一个前端类库管理器,它可用于搜索.安装和卸载如JavaScript.HTML.CSS之类的类库. 官网:https://bower.io/ 安装bower 使用npm, ...
- 【Linux】 环境变量与shell配置&执行
■ 变量与环境变量 shell环境通常存在很多变量,变量可以通过echo $VAR或${VAR}的方式查看.set命令可以查看当前环境中的所有变量(包括一般的自定义变量和环境变量) 变量的设置通过简单 ...