深度学习之 cnn 进行 CIFAR10 分类
深度学习之 cnn 进行 CIFAR10 分类
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage()
import torch as t
import torch.nn as nn
import torch.nn.functional as F
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5)),
])
# 下载数据
trainset = tv.datasets.CIFAR10(root=".",train=True, download=True, transform=transform)
trainloader = t.utils.data.DataLoader(trainset, batch_size=4,shuffle=True, num_workers=2)
testset = tv.datasets.CIFAR10('.', train=False, download=True, transform=transform)
testloader = t.utils.data.DataLoader(testset, batch_size=4,shuffle=False,num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
from torch import optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr = 0.001, momentum=0.9)
from torch.autograd import Variable
for epoch in range(2):
running_loss = 0.0
for i,data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 测试
correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
# print(outputs.data)
_, predicted = t.max(outputs.data, 1)
print(outputs.data,_, predicted)
total += labels.size(0)
correct += (predicted == labels).sum()
print('10000张测式中: %d %%' % (100 * correct / total) )
深度学习之 cnn 进行 CIFAR10 分类的更多相关文章
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- 【深度学习】CNN 中 1x1 卷积核的作用
[深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前 ...
- 深度学习入门: CNN与LSTM(RNN)
1. 理解深度学习与CNN: 台湾李宏毅教授的入门视频<一天搞懂深度学习>:https://www.bilibili.com/video/av16543434/ 其中对CNN算法的矩阵卷积 ...
- 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...
- 深度学习笔记(一):logistic分类【转】
本文转载自:https://blog.csdn.net/u014595019/article/details/52554582 这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概 ...
- PyTorch中使用深度学习(CNN和LSTM)的自动图像标题
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...
- keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...
- 自己动手实现深度学习框架-8 RNN文本分类和文本生成模型
代码仓库: https://github.com/brandonlyg/cute-dl 目标 上阶段cute-dl已经可以构建基础的RNN模型.但对文本相模型的支持不够友好, 这个阶段 ...
- Python深度学习案例1--电影评论分类(二分类问题)
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...
随机推荐
- MySQL多数据源笔记1-MySQL主从复制
1.为什么要做主从复制? 1.在业务复杂的系统中,有这么一个情景,有一句sql语句需要锁表,导致暂时不能使用读的服务,那么就很影响运行中的业务,使用主从复制,让主库负责写,从库负责读,这样,即使主库出 ...
- Hive数据仓库笔记(三)
Joins: Inner joins: hive> SELECT * FROM sales; Joe 2 Hank 4 Ali 0 Eve 3 Hank 2 hive> SELECT * ...
- WCF使用纯代码的方式进行服务寄宿
服务寄宿的目的是为了开启一个进程,为WCF服务提供一个运行的环境.通过为服务添加一个或者多个终结点,使之暴露给潜在的服务消费,服务消费者通过匹配的终结点对该服务进行调用,除去上面的两种寄宿方式,还可以 ...
- 转: web 页面加载速度优化实战-100% 的飞跃提升
前言 一个网站的加载速度有多重要? 反正我相信之前来 博主网站 的人至少有 50% 在加载完成前关闭了本站. 为啥捏? 看图 首页完整加载时间 8.18s,看来能进来看博主网站的人都是真爱呀,哈哈. ...
- iOS 神秘而又强大的传感器系统 (附demo)
iOS中的各种传感器: 随着科技的发展,机器感知人的行为!Goole的无人驾驶汽车到李彦宏的无人驾汽车,都带入了各种计算及传感. 为了研究自然现象和制造劳动工具,人类必须了解外界的各类信息.了解外界信 ...
- mysql主从复制的基本原理
怎么安装mysql数据库,这里不说了,只说它的主从复制,步骤如下: 1.主从服务器分别作以下操作: 1.1.版本一致 1.2.初始化表,并在后台启动mysql 1.3.修改root的密码 2.修 ...
- 需求分析---NABCD
N(Need,需求) 我们的产品未来天气,是为了解决不爱看天气预报的群众开发一款类似备忘录式的天气预报软件.很多人认为今天天气很好,明天肯定不会差,但是风云忽变,可能明天就降大雨,所以就忽略了带伞, ...
- async generator promise异步方案实际运用
es7 async方案 /******************async***********************/ var timeFn=function(time){ return new P ...
- delete与delete[]的区别
一直对C++中的delete和delete[]的区别不甚了解,今天遇到了,上网查了一下,得出了结论.做个备份,以免丢失. C++告诉我们在回收用 new 分配的单个对象的内存空间的时候用 delete ...
- Algorithm --> 顺序打印矩阵
顺序打印矩阵 思路 参考代码 #include <iostream> using namespace std; ], int row, int col) { || col < ) r ...