深度学习之 cnn 进行 CIFAR10 分类

import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage()
import torch as t
import torch.nn as nn
import torch.nn.functional as F transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5)),
]) # 下载数据
trainset = tv.datasets.CIFAR10(root=".",train=True, download=True, transform=transform)
trainloader = t.utils.data.DataLoader(trainset, batch_size=4,shuffle=True, num_workers=2)
testset = tv.datasets.CIFAR10('.', train=False, download=True, transform=transform) testloader = t.utils.data.DataLoader(testset, batch_size=4,shuffle=False,num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net() from torch import optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr = 0.001, momentum=0.9)
from torch.autograd import Variable for epoch in range(2):
running_loss = 0.0
for i,data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels) optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward() optimizer.step() running_loss += loss.data[0]
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training') # 测试
correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
# print(outputs.data)
_, predicted = t.max(outputs.data, 1)
print(outputs.data,_, predicted)
total += labels.size(0)
correct += (predicted == labels).sum() print('10000张测式中: %d %%' % (100 * correct / total) )

深度学习之 cnn 进行 CIFAR10 分类的更多相关文章

  1. [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...

  2. 【深度学习】CNN 中 1x1 卷积核的作用

    [深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前 ...

  3. 深度学习入门: CNN与LSTM(RNN)

    1. 理解深度学习与CNN: 台湾李宏毅教授的入门视频<一天搞懂深度学习>:https://www.bilibili.com/video/av16543434/ 其中对CNN算法的矩阵卷积 ...

  4. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  5. 深度学习笔记(一):logistic分类【转】

    本文转载自:https://blog.csdn.net/u014595019/article/details/52554582 这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概 ...

  6. PyTorch中使用深度学习(CNN和LSTM)的自动图像标题

    介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...

  7. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

  8. 自己动手实现深度学习框架-8 RNN文本分类和文本生成模型

    代码仓库: https://github.com/brandonlyg/cute-dl 目标         上阶段cute-dl已经可以构建基础的RNN模型.但对文本相模型的支持不够友好, 这个阶段 ...

  9. Python深度学习案例1--电影评论分类(二分类问题)

    我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...

随机推荐

  1. Scala对MongoDB的增删改查操作

    =========================================== 原文链接: Scala对MongoDB的增删改查操作 转载请注明出处! ==================== ...

  2. python3.6.4 tkinter安装

    在pyenv虚拟环境中   sudo yum -y install tkinter tcl-devel tk-devel     重新安装python pyenv install -v 3.6.4

  3. 微信公众号的localStorage的大坑

    业务流程是:工厂端分享一个邀请合作的二维码,商户这边用手机扫一扫后,关注微信公众号(已关注的老用户自动进入公众号)然后进入到公众号在面板上收到消息,合作邀请(图文字有点不对,请忽略!) 接下来,在点击 ...

  4. 笔记:Hibernate DML

    Hibernate 提供的HQL(Hibernate Query Language)语句也支持批量 update 和 delete 语法,语法格式如下: [UPDATE | DELETE] FROM ...

  5. extract-text-webpack-plugin---webpack插件

    var ExtractTextPlugin=require('extract-text-webpack-plugin');//build使用 { test:/\.css$/, use:ExtractT ...

  6. 用C#开发的一个通用的地铁换乘查询工具

    日常生活中,上班下班坐地铁已经是常事,每当我想去某一个远一点的地方,如果有地铁首选就是地铁,因为方便嘛!每次坐地铁,我们都是凭肉眼去得出我们心中最佳的换乘方案,但是,如果对于线路较少的城市来说,这个方 ...

  7. STL --> vector向量

    vector向量 vector是一种对象实体,能够容纳许多其他类型相同的元素,因为又被称为容器. 头文件 在使用它时,需要包含头文件 <vector>. #include <vect ...

  8. leaflet简单例子,绘制多边形

    var crs = L.CRS.EPSG900913; var map = L.map('map', { crs: crs, width: '100%', height: '100%', maxZoo ...

  9. 利用whoosh对mongoDB的中文文档建立全文检索

    1.建立索引 #coding=utf-8 from __future__ import unicode_literals __author__ = 'zh' import sys,os from wh ...

  10. SuperMap iClient 查询成功后如何传递参数?

    一.iClient API文档中的接口描述 二.范例 //定义一个this对象 this.param = new SuperMap.LonLat(point.x, point.y); querySer ...