注:本节主要讨论最大堆(最小堆同理)。

一、堆的概念
    堆,又称二叉堆。同二叉查找树一样,堆也有两个性质,即结构性和堆序性。
    1、结构性质:
    堆是一棵被完全填满的二叉树,有可能的例外是在底层,底层上的元素从左到右填入。这样的树称为完全二叉树(complete binary tree)。下图就是这样一个例子。
    
    对于完全二叉树,有这样一些性质:
    (1)、一棵高h的完全二叉树,其包含2^h ~ (2^(h+1) - 1)个节点。也就是说,完全二叉树的高是[logN],显然它是O(logN)。
    (2)、完全二叉树可以用数组进行结构表示:

index

0

1

2

3

4

5

6

7

8

9

10

11

12

13

value


A

B

C

D

E

F

G

H

I

J





    仔细考察该数组的index和元素在树中的分布情况,可以得到:
    对于一个三元素的二叉树,树结构和数组索引有如下关系:
    leftChild.index = 2 * parent.index;
    rightChild.index = 2 * parent.index + 1; 
    (3)、通过前面的讨论,我们可以这样去看待一个堆的数据结构:
    一个数组、当前堆的大小heapLen。
    2、堆序性质:
    使操作被快速执行的性质是堆序性(heap order)。
    堆序性质:在一个堆中,对于每一个节点x,x的父亲中的关键字大于(或等于)x中的关键字,根节点除外(它没有父节点)。
    根据堆序性质,最大元总可以在根处找到。因此,我们以常数时间完成查找操作。
    比较:
    堆序性质的堆:
    
    无堆序性质的堆:
    

二、基本堆操作

    声明:
    int heap[MAX+1];
    int heapLen; //堆的大小

    int leftEle(int i){ return i*2; }
    int rightEle(int i){ return i*2+1; }
    int parentEle(int i){ return i/2; }
    void swap(int i, int j){
        int tmp;
        tmp = i, i = j, j = tmp;
    }


    1、查询操作:    

    int findMax()
    {
        return heap[1];
    }

    函数解析:
    堆的最大值即为根节点元素,直接返回该值即可。


    2、堆维护操作:

    下沉操作:
    void maxHeapify(int i)
    {
        int iLeft = leftEle(i);    //找到该节点的左儿子
        int iRight = rightEle(i);    //找到该节点的右儿子
        int largest = i;    //记录最大值节点,初始为节点自己
        
        //找到最大值对应的节点
        if( iLeft < heapLen && heap[i] < heap[iLeft] )
            largest = iLeft;
        if(iRight < heapLen && heap[largest] < heap[iRight] )
            largest = iRight;
        
        //交换原节点与最大值对应的节点,然后对交换后的节点进行堆维护操作
        if(largest != i)
        {
            swap(heap[i], heap[largest]);
            maxHeapify(largest);
        }
    }


    3、建堆操作:    

    在给出具体如何建堆的操作之前,我们可以考察一下具体应该怎样去实现。
    现在给出一个堆(应该不能称之为堆),这个堆由初始数组构造而成,其结构为:
    
    显然这不是最大堆。
    整个数组为:    
index
83
11
6
15
36
19
value
1
2
3
4
5
6
    经过一系列的操作,我们需要将该堆转换为:
    
    整个最大堆化过程是这样的:自下而上逐层维护堆操作。
    首先,找到第一个有子树的节点,对该节点进行堆维护操作,然后依次向上,进行堆维护。

    这里的问题:
    第一个有子树的节点在哪里?
    ===>>>>>
    对于完全二叉树,叶子节点必然存放在数组的尾端,现在的问题就在于叶子节点到底有多少个?知晓叶子节点的个数后,就可以很容易地确定有子树节点的位置。那么叶子节点到底有多少个呢?
    设完全二叉树总共有n个节点,叶子节点有n0个,由于二叉树的节点的度数最大为2,于是可设度数为1的节点数为n1,度数为2的节点数为n2。
    于是我们可以得到这样几个关系式:
    n0+n1+n2 = n;
    n-1 = 2*n2 + n1;(边数的两种不同表示方式)
    解此方程式,可以得到:    
    n0 = (n+1-n1)/2.
    对于完全二叉树,n1 = 1或0
    当n1=1时,n0=n/2;当n1=0时,n0=(n+1)/2。
    于是我们可以得到叶子节点为总节点数的一半。
    从而有,非叶子节点应该是数组的前半部分。

    ===>>>
    void buildHeap()
    {    
        int i;
        for( i = heapLen/2; i > 0; i--)
            maxHeapify(i);
    }


    4、排序操作:    

    堆排序的关键在于将最大值元素交换到数组尾端,重新进行堆维护操作。依次循环操作,即可以得到排序的数组。
    void heapSort()
    {
        int i;
        buileHeap();
        for( i=heapLen; i>=1; i--)
        {
            swap(heap[heapLen], heap[1]);
            heapLen--;
            maxHeapify(1);
        }
    }
    
    函数解析:
    首先我们先利用堆排序对一数组中的元素进行排序:
23
1
16
9
54

    现在进行堆排序:
    a、建堆:
    
    b、交换54和1,并解除堆最后一个元素与原堆的关系:
    
    c、重构堆:
    
    d、依次循环最终得到:
        
    这样,数组变为:
1
9
16
23
54

从而完成了对数组的排序。


    5、插入元素操作:    

    插入insertHeap():该操作同优先队列(priority queue)中的push操作。
    在介绍具体的插入操作前,需要实现increaseKey(int i, int key)函数,用于更新堆结构。
    上浮操作:
    void increaseKey(int i, int key)
    {
        assert(key >= heap[i]);    //断言key值大于heap[i],如果不成立,则终止并报错
        heap[i] = key;
        while(i > 1 && heap[parentEle(i)] < heap[i])
        {
            swap(heap[i], heap[parentEle(i)]);
            i = parentEle(i);
        }
    }
    在这里,需要着重介绍一下increaseKey操作的具体步骤,举例说明:
    对于这样一个堆,将节点6的值由8增加到54—>>>:
    
    整个操作过程即为increaseKey(6, 54)。
    整个过程如下:
    
    于是,插入元素到堆的代码如下:
    void insertHeap( int x )
    {
        heapLen++;
        heap[heapLen] = -INF;
        increaseKey(heapLen, x);
    }

    6、删除元素操作:

    删除deleteHeapMax():相当于优先队列中的pop()操作。
    int deleteHeapMax()
    {
        int ret = heap[1];
        swap(ret, heap[heapLen]);
        heapLen--;
        maxHeapify(1);
        return ret;
    }


三、算法分析:
查询操作
O(1)
堆维护操作
O(logN)
建堆操作
O(NlogN)
堆排序操作
O(NlogN)

数据结构 之 二叉堆(Heap)的更多相关文章

  1. D&F学数据结构系列——二叉堆

    二叉堆(binary heap) 二叉堆数据结构是一种数组对象,它可以被视为一棵完全二叉树.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.对于数组中任意位置i上的元素,其左儿子在位置2i上,右儿 ...

  2. 【算法与数据结构】二叉堆和优先队列 Priority Queue

    优先队列的特点 普通队列遵守先进先出(FIFO)的规则,而优先队列虽然也叫队列,规则有所不同: 最大优先队列:优先级最高的元素先出队 最小优先队列:优先级最低的元素先出队 优先队列可以用下面几种数据结 ...

  3. 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列

    概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...

  4. 数据结构图文解析之:二叉堆详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  5. POJ 2010 - Moo University - Financial Aid 初探数据结构 二叉堆

    考虑到数据结构短板严重,从计算几何换换口味= = 二叉堆 简介 堆总保持每个节点小于(大于)父亲节点.这样的堆被称作大根堆(小根堆). 顾名思义,大根堆的数根是堆内的最大元素. 堆的意义在于能快速O( ...

  6. 二叉堆(binary heap)

    堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因 ...

  7. 《数据结构与算法分析:C语言描述》复习——第五章“堆”——二叉堆

    2014.06.15 22:14 简介: 堆是一种非常实用的数据结构,其中以二叉堆最为常用.二叉堆可以看作一棵完全二叉树,每个节点的键值都大于(小于)其子节点,但左右孩子之间不需要有序.我们关心的通常 ...

  8. Binary Heap(二叉堆) - 堆排序

    这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...

  9. 堆(Heap)和二叉堆(Binary heap)

    堆(Heap) The operations commonly performed with a heap are: create-heap: create an empty heap heapify ...

随机推荐

  1. RTMPdump(libRTMP) 源代码分析 7: 建立一个流媒体连接 (NetStream部分 2)

    ===================================================== RTMPdump(libRTMP) 源代码分析系列文章: RTMPdump 源代码分析 1: ...

  2. OpenCV meanshift 图像分割代码

    参考:这个帖子的主要代码有错误,根据回帖改了一些 http://www.cnblogs.com/tornadomeet/archive/2012/06/06/2538695.html // means ...

  3. ActiveMQ系列之五:ActiveMQ的Transport

    连接到ActiveMQ Connector:ActiveMQ提供的,用来实现连接通讯的功能.包括:client-to-broker.broker-to-broker. ActiveMQ允许客户端使用多 ...

  4. Linux 系统应用编程——进程基础

    一.Linux下多任务机制的介绍 Linux有一特性是多任务,多任务处理是指用户可以在同一时间内运行多个应用程序,每个正在执行的应用程序被称为一个任务. 多任务操作系统使用某种调度(shedule)策 ...

  5. Course2-Python函数和模块

    一. 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率. 上一课里提到了Python的很多内置函数.在此主要讲自定义函数. 1. 定 ...

  6. SPRING事务的属性有哪些?其中,事务隔离级别有哪几种?什么情况需要使用这几种事务隔离级别?

    Spring 声明式事务,propagation属性列表  PROPAGATION_REQUIRED:支持当前事务,如果当前没有事务,就新建一个事务.这是最常见的选择.  PROPAGATION_SU ...

  7. DDD中直接引用和ID关联的关系

    聚合根到聚合根:通过ID关联: 聚合根到其内部的实体,直接引用: 聚合根到值对象,直接引用: 实体到聚合根: 通过ID关联 : 实体到其聚合的聚合根:1对1ID关联,1对多可直接引用 : 实体到其聚合 ...

  8. C#中的var和dynamic

    在理解var和dynamic关键字之前,让我们先了解一下编程语言的类别. C#中有两类编程语言: 静态类型语言类别 动态语言类别 静态类型语言 静态类型语言也被称为强类型语言.所谓强类型语言,通俗的讲 ...

  9. 做双网卡绑定_______物理机在双网卡的情况下做多IP绑定

    公司的环境是这样的: 一台物理机需要做双网卡绑定,同时呢,在双网卡绑定的同时还要做多IP. 其实整个过程可以分为两个步骤: 第一个,物理机先做双网卡. 第二个,在bond上做多IP实例. 双网卡绑定的 ...

  10. Day5_模块与包(import)(form......import....)

    一个文件中定义了很多模块,然后可以再别的文件中调用这几个模块. #导入模块(import) #1,执行源文件 #2,产生以源文件为基础的全局名称空间.