Description

有一张N×m的数表,其第i行第j列(1 < =i < =N,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148

HINT

1 < =N.m < =10^5  , 1 < =Q < =2×10^4

题解

假设没有 $a$ 的限制,那么题目就是求 $$\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))$$

这个 $\sigma$ 太鬼辣!我们用 $♂$ 来代替它。

我们提出 $gcd(i,j)$ \begin{aligned}ans&=\sum_{d=1}^{min\{n,m\}}♂(d)\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]\\&=\sum_{d=1}^{min\{n,m\}}♂(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[gcd(i,j)=1]\\&=\sum_{d=1}^{min\{n,m\}}♂(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{k\mid gcd(i,j)}\mu(k)\\&=\sum_{d=1}^{min\{n,m\}}♂(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{k\mid gcd(i,j)}\mu(k)\\&=\sum_{d=1}^{min\{n,m\}}♂(d)\sum_{k=1}^{min\left\{\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor\right\}}\mu(k)\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\end{aligned}

令 $T=kd$ ,枚举 $T$ $$ans=\sum_{T=1}^{min\{n,m\}}\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\sum_{k\mid T}♂(k)\mu\left(\frac{T}{k}\right)$$

我们让后面那个狄利克雷卷积形式记作 $F(T)$ $$ans=\sum_{T=1}^{min\{n,m\}}F(T)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor$$

现在就好求了,我们可以用枚举因数的方法来算出函数 $F$ 的值。

现在回到原问题,我们发现 $a$ 的约束还是不好操作。但我们想对于一个询问中的  $a$ 只有 $♂(d)\leq a$ 的值才会对其有影响。我们考虑离线询问,将 $a$ 从小到大排序。将数值 $i$ 按 $♂(i)$ 的大小排序。枚举因数用树状数组维护前缀。

 //It is made by Awson on 2018.1.25
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e5;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int q, ans[N+], sig[N+], mu[N+];
struct query {
int n, m, a, id;
bool operator < (const query &b) const {
return a < b.a;
}
}a[N+];
struct sigma {
int a, id;
bool operator < (const sigma &b) const {
return a < b.a;
}
}b[N+];
struct bittree {
int c[N+];
void add(int x, int val) {for (; x <= N; x += lowbit(x)) c[x] += val; }
int query(int x) {
int ans = ;
for (; x; x -= lowbit(x)) ans += c[x];
return ans;
}
}T; void get_pre() {
int isprime[N+], prime[N+], tot = , sumd[N+], prod[N+];
memset(isprime, , sizeof(isprime)); isprime[] = , mu[] = sig[] = ; b[].id = b[].a = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) prime[++tot] = i, mu[i] = -, sig[i] = +i, sumd[i] = +i, prod[i] = i;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ;
if (i%prime[j]) mu[i*prime[j]] = -mu[i], sig[i*prime[j]] = sig[i]*sig[prime[j]], sumd[i*prime[j]] = +prime[j], prod[i*prime[j]] = prime[j];
else {mu[i*prime[j]] = , prod[i*prime[j]] = prod[i]*prime[j], sumd[i*prime[j]] = sumd[i]+prod[i*prime[j]], sig[i*prime[j]] = sig[i]/sumd[i]*sumd[i*prime[j]]; break; }
}
b[i].id = i, b[i].a = sig[i];
}
}
int solve(int n, int m) {
if (n > m) Swap(n, m); int ans = ;
for (int i = , last; i <= n; i = last+) {
last = Min(n/(n/i), m/(m/i)); ans += (n/i)*(m/i)*(T.query(last)-T.query(i-));
}
return ans;
}
void work() {
get_pre(); read(q);
for (int i = ; i <= q; i++) read(a[i].n), read(a[i].m), read(a[i].a), a[i].id = i;
sort(a+, a++q); sort(b+, b++N);
for (int i = , last = ; i <= q; i++) {
while (last < N && b[last].a <= a[i].a) {
for (int j = ; j*b[last].id <= N; j++) if (mu[j]) T.add(j*b[last].id, mu[j]*b[last].a);
last++;
}
ans[a[i].id] = solve(a[i].n, a[i].m);
}
for (int i = ; i <= q; i++) writeln(ans[i]&(~0u>>));
}
int main() {
work();
return ;
}

[SDOI 2014]数表的更多相关文章

  1. 解题:SDOI 2014 数表

    题面 为了好写式子,先不管$a$的限制 设$facs$为因子和,那么有 $ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^mfacs(gcd(i,j))$ 再设$f( ...

  2. 「BZOJ 3529」「SDOI 2014」数表「莫比乌斯反演」

    题意 有一张 \(n\times m\) 的数表,其第\(i\)行第\(j\)列的数值为能同时整除\(i\)和\(j\)的所有自然数之和. \(T\)组数据,询问对于给定的 \(n,m,a\) , 计 ...

  3. 【BZOJ 3529】【SDOI 2014】数表

    看Yveh的题解,这道题卡了好长时间,一直不明白为什么要······算了当时太naive我现在都不好意思说了 #include<cstdio> #include<cstring> ...

  4. 【SDOI 2014】数表

    题意 https://loj.ac/problem/2193 题解 ​显然就是求 $\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sigma_1(\gcd{ ...

  5. 【BZOJ 3531】【SDOI 2014】旅行

    因为有$10^5$个宗教,需要开$10^5$个线段树. 平时开的线段树是“满”二叉树,但在这个题中代表一个宗教的线段树管辖的区间有很多点都不属于这个宗教,也就不用“把枝叶伸到这个点上”,所以这样用类似 ...

  6. [BZOJ 3530][Sdoi 2014]数数

    阿拉~好像最近总是做到 AC 自动机的题目呢喵~ 题目的算法似乎马上就能猜到的样子…… AC 自动机 + 数位 dp 先暴力转移出 f[i][j] :表示从 AC 自动机上第 j 号节点走 i 步且不 ...

  7. BZOJ 3533 sdoi 2014 向量集

    设(x,y)为Q的查询点,分类讨论如下:1.y>0:  最大化a*x+b*y,维护一个上凸壳三分即可 2.y<0:最大化a*x+b*y  维护一个下凸壳三分即可 我们考虑对时间建出一棵线段 ...

  8. 解题:SDOI 2014 重建

    题面 做这个这个题需要稍微深入理解一点矩阵树定理:套矩阵树定理得到的东西是有意义的,它是“所有生成树边权乘积之和”(因为度数矩阵是点的边权和,邻接矩阵是边权),即$\sum_{t}\prod_{e∈t ...

  9. 【BZOJ 3530】【SDOI 2014】数数

    http://www.lydsy.com/JudgeOnline/problem.php?id=3530 上午gty的测试题,爆0了qwq 类似文本生成器那道题,把AC自动机的转移建出来,准确地说建出 ...

随机推荐

  1. 腾讯云python网站开发环境搭建

    前段时间腾讯云做活动,于是就花了几百大洋买了三年的云服务,准备在上 面安装python web的开发环境,下面将安装过程做一个总结,希望能够帮助大家. 一.使用环境   使用的软件环境为:CentOS ...

  2. 2017-2018-1 Java演绎法 第二周 作业

    团队任务:讨论Android上的游戏软件 参考现代软件工程 第一章 [概论]练习与讨论: 软件有很多种,也有各种分类办法,本次团队任务是讨论选取Android上的一个游戏软件,考虑到每位组员接触的游戏 ...

  3. tornado options

    tornado.options.define() 用来定义options选项变量的方法,定义的变量可以在全局的tornado.options.options中获取使用,传入参数: name 选项变量名 ...

  4. 关于使用栈将一般运算式翻译为后缀表达式并实现三级运算的方法及实例(cpp版)

    #include <iostream> #include <stack> #include <vector> #include <string> #de ...

  5. javabean 是什么?

    JavaBean规范 Bean的中文含义是“豆子”,顾名思义,JavaBean是指一段特殊的Java类, 就是有默然构造方法,只有get,set的方法的java类的对象. 专业点解释是: JavaBe ...

  6. 从PRISM开始学WPF(四)Prism-Module?

    从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...

  7. openfalcon

    一.环境准备 操作系统:centos7(minimal,www.centos.org下载的包是CentOS-7-x86_64-Minimal-1611.iso) 1.1 更换阿里yum(个人习惯) 步 ...

  8. 使用location.href跳转页面在火狐浏览器中报错404

    HTML文件中引入外部js文件,在该js文件里用window.location.href跳转相对路径下的html地址,火狐浏览器会报错404,而谷歌浏览器却显示正常·,分析了一下原因:在识别相对路径时 ...

  9. python 中 reduce 函数的使用

    reduce()函数也是Python内置的一个高阶函数. reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接 ...

  10. dubbo的InvocationChain

    个人觉得dubbo比较好的设计是:一个是Cooma微容器设计.另一个就是InvocationChain了 Cooma微容器是自己实现了一套SPI,方便了用户做扩展: InvocationChain类似 ...