[hihoCoder] 高斯消元·一 [TPLY]
高斯消元一
题目链接 : http://hihocoder.com/problemset/problem/1195?sid=1269842
很"好aoaoaoaoaoaoa"的高斯消元模板题
题意
多个方程组,要求:输出解、判无解、判多解
保证方程解非负
做法
第一点注意
首先要会高斯消元(废话)
然后还要卡精度
所以一定要用eps卡精度
这是第一点
第二点注意
然后就是最恶心的:判无解多解
我们先明确一点:无解优先级大于多解
什么意思呢?
对于一个方程,我们要先检查无解,再检查多解
明白这一点之后,咱们继续。
第三点注意
无解怎么判断?
如果 方程系数都等于0并且结果大于 0 则无解(因为题目保证解是非负数)
(形如 x × 0 = y , x × -1 = y | x>0 && y>0,肯定无解)
第四点注意
如何判断多解?
如果在消元过程中,某一列都被消成了0,并且保证该方程有解,那么这个方程是多解的。
为什么呢?
因为如果一个未知数上的系数都是0,那么这个未知数有无穷多种取法,所以方程就有多组解了。
第五点注意
如果你发现有多解,但是不确定是不是无解怎么办?
如果在最后用倒三角求未知数的值时
我们求到一个未知数的系数为0
但是它的值不为0的时候
那么它就是无解的
反之就是多解的
总结
综上所述 这道题是"不折不扣"的"模板题"
代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <cmath>
#define rg register int
#define ll long long
#define RG register
#define il inline
using namespace std;
il int gi()
{
rg x=0,o=0;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||'9'<ch)) ch=getchar();
if(ch=='-') o=1,ch=getchar();
while('0'<=ch&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return o?-x:x;
}
int n,m;
#define db double
db x[1001],fc[1001][501];
il int gauss()
{
RG bool flg=0;
for(rg now,k=1; k<=n; ++k)
{
now=k;
for(rg i=k+1; i<=m; ++i)
if(fabs(fc[i][k])>fabs(fc[now][k]))
now=i;
if(now==k && fabs(fc[k][k])<1e-7)
{
flg=1;
continue;
}
if(now!=k) swap(fc[now],fc[k]);
for(rg i=k+1; i<=n+1; ++i) fc[k][i]/=fc[k][k];fc[k][k]=1;
for(rg i=k+1; i<=m; ++i)
{
for(rg j=k+1; j<=n+1; ++j)
fc[i][j]-=fc[i][k]*fc[k][j];
fc[i][k]=0;
}
}
for(rg j,i=1; i<=m; ++i)
{
for(j=1; j<=n; ++j)
if(fabs(fc[i][j])>1e-6)
break;
if(j==n+1 && fabs(fc[i][n+1])>1e-6) return 0; // 如果 方程系数小于0并且结果大于 0 则无解
}
for(rg i=n; i>=1; --i)
{
for(rg j=i+1; j<=n; ++j) fc[i][n+1]-=fc[i][j]*fc[j][n+1];
if(fc[i][n+1] && !fc[i][i] ) return 0;
}
if(flg) return -1;
return 1;
}
int main()
{
n=gi(),m=gi();
for(rg i=1; i<=m; ++i)
for(rg j=1; j<=n+1; ++j)
scanf("%lf",&fc[i][j]);
rg ans=gauss();
if(ans==-1) puts("Many solutions");
else if(ans==0) puts("No solutions");
else for(rg i=1; i<=n; ++i) printf("%d\n",(int)(fc[i][n+1]+0.5));
return 0;
}
[hihoCoder] 高斯消元·一 [TPLY]的更多相关文章
- HihoCoder 1195 高斯消元·一(高斯消元)
题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...
- hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】
题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- hihocoder 1196 高斯消元.二
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其他的活动. 店主:买了 ...
- hihoCoder 1195 高斯消元.一
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...
- hihoCoder #1195 高斯消元·一
题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...
- hihocoder图像算子(高斯消元)
描述 在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果. 假设原图为H × W的矩阵A,算子矩阵为D × D的矩阵Op,则处理后的矩阵B大小为(H-D+1) × ...
- hihoCoder#1196 : 高斯消元·二(开关灯问题)
传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可 ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
随机推荐
- typedef void(*Fun)(void);
typedef void(*Fun)(void); 函数类似于数组,函数名就是它的首地址: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...
- 关于git post-receive 钩子
登录 git服务器 进入你项目所在git文件夹 cd /var/opt/gitlab/git-data/repositories/liangyuquan/yfg.git cd hooks vim po ...
- C/C++调试分析工具
一.静态分析工具 cppcheck cppcheck主要用于对C/C++源代码进行分析检查的一个开源工具,可以用来检测未使用的变量.越界访问.内存泄漏等问题. 使用方法 cppcheck --enab ...
- PHP 个人用到的琐碎代码记录
查找字符串出现次数的方法 substr_count(string,substring,[start],[length]) 函数延迟代码执行若干秒,若成功,返回 0,否则返回 false. sleep( ...
- Maven常用命令及在Eclipse中的应用
1.常用命令 mvn archetype:generate--构建项目 mvn clean--项目清理 mvn test--项目单元测试的编译 mvn compile--项目源代码的编译 mvn pa ...
- shell脚本比较字符串相等
昨天在定位一个bug的时候,需要些shell脚本,用到了字符串的比较,出了一个小问题,就搜索总结了一下. 第一种方法:-eq 对比字符串是否相等,我首先想到的就是 -eq,然而打印的结果不正确.各种e ...
- 常用的CSS框架
常用的CSS框架 之前在写自己的个人网站的时候,由于自己Web前端不是特别好,于是就去找相关的CSS框架来搭建页面了. 找到以下这么一篇文章(列出了很多常用的CSS框架): http://w3scho ...
- Spring data mongodb 替换 Repository 实现类,findAll 排除 字段
因文档比较大,有时候findAll 不想返回所有数据.没有找到默认的findAll 能够include 或者 exclude 的方法,所以想办法扩展一下实现类 query.fields().inclu ...
- Dockerfile 编译安装mysql5.7 千万不要执行.只是记录一下编译安装罢了
开启所有核心make 20G 内存都不够玩,跑3-4个核心吧,还好. 最后的出来的镜像3G多,百思不得其解,看了官方的Dockerfile,也没什么特别,就是 apt 或者 yum.好吧,不知做了什 ...
- Java日期操作工具类
/** * 格式化日期显示格式 * * @param sdate * 原始日期格式 s - 表示 "yyyy-mm-dd" 形式的日期的 String 对象 * @param fo ...