【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
题面
题解
很显然,二分一个答案
考虑如何求小于等于这个数的非完全平方数倍数的个数
这个明显可以直接,莫比乌斯反演一下
然后这题就很简单了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 100000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+1000];
int mu[MAX+1000],pri[MAX+1000],tot;
int n,g[MAX+1000];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
}
long long Work(long long k)
{
long long ret=0,l=sqrt(k);
for(int i=1;i<=l;++i)ret+=1ll*mu[i]*k/(1ll*i*i);
return ret;
}
int main()
{
int T=read();
Get();
while(T--)
{
long long K=read();
long long l=1,r=1e10,ans=0;
while(l<=r)
{
long long mid=(l+r)>>1;
if(Work(mid)>=K)ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}
【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)的更多相关文章
- [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]
题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...
- [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用
完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日 ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- [bzoj2440]完全平方数(二分+mobius反演)
解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数...... 这道题用莫比乌斯的正向 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]
题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
随机推荐
- memcached安装与使用详解
一.memcache的简介 memcache是高速,分布式的内存缓存服务器 php的缓存方式一般可以使用memcache技术和redis技术,其中各有优劣,因不同的情况而选择较为适合的缓存技术,其中m ...
- a:hover 等伪类选择器
a.random:hover{ color:#64FFDA; font-size:120%; } //选择的是class="random"的<a>标签. a#s ...
- 面试陷阱1:Integer类型的比较
public class Test01 { public static void main(String[] args) { Integer f1 = 100, f2 = 100, f3 = 150, ...
- Python自动化--语言基础4--模块、文件读写、异常
模块1.什么是模块?可以理解为一个py文件其实就是一个模块.比如xiami.py就是一个模块,想引入使用就在代码里写import xiami即可2.模块首先从当前目录查询,如果没有再按path顺序逐一 ...
- Android Native App自动化测试实战讲解(上)(基于python)
1.Native App自动化测试及Appuim框架介绍 android平台提供了一个基于java语言的测试框架uiautomator,它一个测试的Java库,包含了创建UI测试的各种API和执行自动 ...
- 如何在CentOS 7上部署Google BBR【搬运、机翻】
如何在CentOS 7上部署Google BBR 本文章搬运自 https://www.vultr.com/docs/how-to-deploy-google-bbr-on-centos-7 [注:文 ...
- C++ 如何获取三个相同数值中的最大值或最小值?
C++ 如何获取三个相同数值中的最大值或最小值? template<typename T> T Max(T x, T y, T z) { return x > y ? (x > ...
- linux 存储技术 部署iSCSI NFS Multipath多路径
存储技术应用存储是根据不同的应用环境通过采取合理,安全,有效的方式将数据保存到某些介质上并能保证有效的访问另一方面,它是保证数据完整安全存放的方式或行为存储就是把这两方面结合起来,向客户提供一套数据存 ...
- spring中自定义Event事件的使用和浅析
在我目前接触的项目中,用到了许多spring相关的技术,框架层面的spring.spring mvc就不说了,细节上的功能也用了不少,如schedule定时任务.Filter过滤器. intercep ...
- 讨论MMU
MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制 ...