【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)

题面

BZOJ

题解

很显然,二分一个答案

考虑如何求小于等于这个数的非完全平方数倍数的个数

这个明显可以直接,莫比乌斯反演一下

然后这题就很简单了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 100000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+1000];
int mu[MAX+1000],pri[MAX+1000],tot;
int n,g[MAX+1000];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
}
long long Work(long long k)
{
long long ret=0,l=sqrt(k);
for(int i=1;i<=l;++i)ret+=1ll*mu[i]*k/(1ll*i*i);
return ret;
}
int main()
{
int T=read();
Get();
while(T--)
{
long long K=read();
long long l=1,r=1e10,ans=0;
while(l<=r)
{
long long mid=(l+r)>>1;
if(Work(mid)>=K)ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)的更多相关文章

  1. [中山市选2011][bzoj2440] 完全平方数 [二分+莫比乌斯容斥]

    题面 传送门 思路 新姿势get 莫比乌斯容斥 $\sum_{i=1}{n}\mu(i)f(i)$ 这个东西可以把所有没有平方质因子的东西表示出来,还能容斥掉重复的项 证明是根据莫比乌斯函数的定义,显 ...

  2. [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用

    完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.  这天是小X的生日 ...

  3. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  4. [bzoj2440]完全平方数(二分+mobius反演)

    解题关键:由容斥原理得,num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数...... 这道题用莫比乌斯的正向 ...

  5. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  6. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  7. [bzoj2440]完全平方数[中山市选2011][莫比乌斯函数][线性筛][二分答案]

    题意:求第k个分解质因子后质因子次数均为一的数,即求第k个无平方因子数. 题解: 首先二分答案mid,那么现在就是要求出mid以内的无平方因子数的个数. 其次枚举$\sqrt{mid}$内的所有质数, ...

  8. BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...

  9. 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)

    传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...

随机推荐

  1. 理解Java类加载机制(译文)

    理解java类加载机制 你想写类加载器?或者你遇到了ClassCastException异常,或者你遇到了奇怪的LinkageError状态约束异常.应该仔细看看java类的加载处理了. 什么是类加载 ...

  2. Netty ByteBuf梳理

    我们知道,网络数据的基本单位总是字节.Java NIO提供了ByteBuffer作为它的字节容器,但是这个类使用起来过于复杂,而且也有些繁琐. Netty的ByteBuffer替代品是ByteBuf, ...

  3. 解决`向github提交代码是老要输入用户名密码`

    在命令行输入命令:git config --global credential.helper store☞ 这一步会在用户目录下的.gitconfig文件最后添加: [credential] help ...

  4. MYSQL 基础总结

    学习笔记 [mysql 是不区分大小写的,要区分可以用相应的函数:所有标点符号全是英文状态下的] 一.基础部分 //创建数据库 Create  database  database_name; //使 ...

  5. JDBC 基础

    JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口 ...

  6. 箱型图boxplot函数的使用

    主要参数: medlwd:设置中位线宽度 whiskcol:设置虚线颜色 staplecol:设置顶端颜色 outcol:离群值颜色 相应的具体位置: outline=FALSE:去除离群值 outp ...

  7. Git版本控制的基本命令

    安装完了GIT首先要自报家门,否则代码不能提交 git config --global user.name "Your Name" git config --global user ...

  8. windows转mac-开发环境搭建(一):mac上搭建maven环境

    1.下载地址:https://maven.apache.org/download.cgi 将下载的maven压缩包进行解压,放入到一个方便管理的文件当中,解压命令:tar zxvf apache-ma ...

  9. hdu 1878 无向图的欧拉回路

    原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...

  10. SpringBoot整合Mybatis,多数据源,事务,支持java -jar 启动.

    用了一段时间SpringBoot,之前配置MYBATIS ,在打包WAR 放到tomcat下正常,但是WAR已经过时了,现在流行直接打包JAR 丢到DOCKER 里,无奈JAR 启动的时候MAPPER ...