Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the same label) and a shuffle machine. We assume that N is an odd integer.
The shuffle machine accepts the set of cards arranged in an
arbitrary order and performs the following operation of double shuffle :
for all positions i, 1 <= i <= N, if the card at the position i
is j and the card at the position j is k, then after the completion of
the operation of double shuffle, position i will hold the card k.

Alice and Bob play a game. Alice first writes down all the
numbers from 1 to N in some random order: a1, a2, ..., aN. Then she
arranges the cards so that the position ai holds the card numbered a
i+1, for every 1 <= i <= N-1, while the position aN holds the card numbered a1.

This way, cards are put in some order x1, x2, ..., xN, where xi is the card at the i
th position.

Now she sequentially performs S double shuffles using the
shuffle machine described above. After that, the cards are arranged in
some final order p1, p2, ..., pN which Alice reveals to Bob, together
with the number S. Bob's task is to guess the order x1, x2, ..., xN in
which Alice originally put the cards just before giving them to the
shuffle machine.

Input
The first line of the input contains two integers separated by a
single blank character : the odd integer N, 1 <= N <= 1000, the
number of cards, and the integer S, 1 <= S <= 1000, the number of
double shuffle operations.

The following N lines describe the final order of cards after
all the double shuffles have been performed such that for each i, 1
<= i <= N, the (i+1)
st line of the input file contains pi (the card at the position i after all double shuffles).

Output
The output should contain N lines which describe the order of cards just before they were given to the shuffle machine.

For each i, 1 <= i <= N, the ith line of the output
file should contain xi (the card at the position i before the double
shuffles).

Sample Input
7 4
6
3
1
2
4
7
5
Sample Output
4
7
5
6
1
2
3
先用最终序列模拟,求出该平方洗牌法的循环长度cnt
然后再变换最终序列(cnt-m%cnt)次,得到初始序列
这只是一种很好理解的方法
实际上,本题有几个条件:
1.只有1个循环,这保证了置换n次必定循环,求cnt转化为求解2cnt ≡ 1(mod n)
2.n为奇数,以上方程必定有解
所以不需要模拟,直接枚举求解(实在无聊打个BSGS也可以,还不用拓展)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,c[],a[],b[];
int get_round()
{int cnt=,i,flag;
while ()
{
for (i=;i<=n;i++)
c[i]=b[b[i]];
flag=;
cnt++;
for (i=;i<=n;i++)
if (c[i]!=a[i])
{
flag=;
break;
}
if (flag) return cnt;
for (i=;i<=n;i++)
b[i]=c[i];
}
}
int main()
{int i,cnt;
cin>>n>>m;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
c[i]=a[i];
}
cnt=get_round();
m%=cnt;
m=cnt-m;
while (m--)
{
for (i=;i<=n;i++)
b[i]=a[a[i]];
for (i=;i<=n;i++)
a[i]=b[i];
}
for (i=;i<=n;i++)
printf("%d\n",a[i]);
}

POJ 1721 CARDS的更多相关文章

  1. POJ 1721 CARDS(置换群)

    [题目链接] http://poj.org/problem?id=1721 [题目大意] 给出a[i]=a[a[i]]变换s次后的序列,求原序列 [题解] 置换存在循环节,因此我们先求出循环节长度,置 ...

  2. poj 1721 CARDS (置换群)

    题意:给你一个数列,第i号位置的数位a[i],现在将数列进行交换,交换规则为a[i]=a[a[i]]:已知交换s次之后的序列,求原先序列 思路:置换的问题必然存在一个循环节,使一个数列交换n次回到原来 ...

  3. POJ 1721

    好像不需要用到开方什么的... 可以知道,一副牌即是一个循环,那么,由于GCD(L,K)=1,所以一次洗牌后,亦是一个循环.其实,K次洗牌等于是T^(2^K)了.既然是循环,必定有周期.那么,周期是多 ...

  4. poj 1511-- Invitation Cards (dijkstra+优先队列)

    刚开始想复杂了,一直做不出来,,,其实就是两遍dijkstra+优先队列(其实就是板子题,只要能有个好的板子,剩下的都不是事),做出来感觉好简单...... 题意:有n个车站和n个志愿者,早上每个志愿 ...

  5. 觉得一篇讲SPFA还不错的文章

    我觉得他整理的有一些乱,我都改成插入代码了,看的顺眼一些 转载自http://blog.csdn.net/juststeps/article/details/8772755 下面的都是原文: 最短路径 ...

  6. 1.1.1最短路(Floyd、Dijstra、BellmanFord)

    转载自hr_whisper大佬的博客 [ 一.Dijkstra 比较详细的迪杰斯特拉算法讲解传送门 Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkstra常常作为其他算 ...

  7. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  8. [POJ] 1511 Invitation Cards

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 18198   Accepted: 596 ...

  9. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

随机推荐

  1. win7开启wifi

    在启用本地共享连接时,出现的错误! 我已经建了一个无线临时网络,来启用共享用来上网的!Internet连接共享访问被启用时,出现了一个错误(null)?而且这错误也会在系统日志里留下记录,都是些莫名其 ...

  2. Python upper()方法

    描述 Python upper() 方法将字符串中的小写字母转为大写字母. 语法 upper()方法语法: str.upper() 参数 NA. 返回值 返回小写字母转为大写字母的字符串. 实例 以下 ...

  3. python 进程复习

    import os import time ret = os.fork() # 创建子线程 if ret ==0: # 子进程中返回值为0,父进程>0 while True: print('.. ...

  4. ajax实现无刷新分页效果

    基于jquery.pagination.js实现的无刷新加载分页数据效果. 简介与说明 * 该插件为Ajax分页插件,一次性加载数据,故分页切换时无刷新与延迟.如果数据量较大,加载会比较慢. * 分页 ...

  5. MySQL搭建主从数据库 实现读写分离

    首先声明,实际生产中,网站为了提高用户体验,性能等,将数据库实现读写分离是有必要的,我们让主数据库去写入数据,然后当用户查询的时候,然后在从数据库读取数据,故能减轻数据库的压力,实现良好的用户体验! ...

  6. C# 使用 GDI+ 画图

    最近做一个微信公众号服务,有一些简单的图片处理功能.主要就是用户在页面操作,前端做一些立刻显示的效果,然后提交保存时后端真正修改原图. 我们的后端是 ASP.NET,也就是 C# 语言了,C# 本身处 ...

  7. SLF4J - 一个允许你统一日志记录API的抽象层

    一.什么是SLF4J 我们在做Java开发时,如果需要记录日志,有很多日志API可供选择,如: java.util.logging Apache log4j logback SLF4J又是个什么东东呢 ...

  8. C#微信公众号开发——错误一

    一.网站发布后,运行报如下错误

  9. Mac里安装Jmeter

    前提是需要安装jdk,参见http://www.cnblogs.com/fun0623/p/4703456.html 1.解压包 (双击apache-jmeter-2.13) 2.进去到解压后的bin ...

  10. shiro的sessionManager类继承结构及主要类方法

    shiro1.3.2 sessionManage的作用是对会话进行管理. 1.类结构 2.主要接口介绍 SessionManager: 包括两个方法,一个是新建会话,一个是通过key获取会话 Vali ...