Description

给您一颗树,每个节点有个初始值。

现在支持以下两种操作:

  1. C i x(0<=x<2^31) 表示将i节点的值改为x。
  2. Q i j x(0<=x<2^31) 表示询问i节点到j节点的路径上有多少个值为x的节点。

解题报告:

用时:1h20min,3WA

简单题,对每一种颜色建一棵树链剖分的数组,可以持久化一下,动态加点,暴力搞搞即可

空间时间复杂度:\(O((n+m)logn)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005;
int n,m,head[N],num=0,to[N<<1],nxt[N<<1],col[N],id[N],DFN=0,b[N<<2],sum=0;
struct question{int flag,x,y,z;}q[N<<1];
void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
int dep[N],top[N],fa[N],sz[N],son[N],tot;char s[3];
void dfs1(int x){
int u;sz[x]=1;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(dep[u])continue;
dep[u]=dep[x]+1;fa[u]=x;
dfs1(u);
sz[x]+=sz[u];
if(sz[u]>sz[son[x]])son[x]=u;
}
}
void dfs2(int x,int tp){
top[x]=tp;id[x]=++DFN;
if(son[x])dfs2(son[x],tp);
for(int i=head[x];i;i=nxt[i])
if(to[i]!=son[x] && to[i]!=fa[x])dfs2(to[i],to[i]);
}
int totnode=0,root[N<<2];
struct node{int l,r,s;}t[N*160];
void updata(int &rt,int last,int l,int r,int sa,int to){
rt=++totnode;t[rt]=t[last];
if(l==r){t[rt].s+=to;return ;}
int mid=(l+r)>>1;
if(sa>mid)updata(t[rt].r,t[last].r,mid+1,r,sa,to);
else updata(t[rt].l,t[last].l,l,mid,sa,to);
t[rt].s=t[t[rt].l].s+t[t[rt].r].s;
}
int query(int rt,int l,int r,int sa,int se){
if(l>se || r<sa)return 0;
if(sa<=l && r<=se)return t[rt].s;
int mid=(l+r)>>1;
return query(t[rt].l,l,mid,sa,se)+query(t[rt].r,mid+1,r,sa,se);
}
int solve(int x,int y,int co){
int ret=0;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
ret+=query(root[co],1,n,id[top[x]],id[x]);
x=fa[top[x]];
}
if(id[x]>id[y])swap(x,y);
ret+=query(root[co],1,n,id[x],id[y]);
return ret;
}
void work()
{
int x,y;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&col[i]),b[++sum]=col[i];
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
link(x,y);link(y,x);
}
dep[1]=1;dfs1(1);dfs2(1,1);
for(int i=1;i<=m;i++){
scanf("%s%d%d",s,&q[i].x,&q[i].y);
if(s[0]=='C')q[i].flag=0,b[++sum]=q[i].y;
else scanf("%d",&q[i].z),q[i].flag=1,b[++sum]=q[i].z;
}
sort(b+1,b+sum+1);
tot=unique(b+1,b+sum+1)-b-1;
for(int i=1;i<=n;i++){
col[i]=lower_bound(b+1,b+tot+1,col[i])-b;
updata(root[col[i]],root[col[i]],1,n,id[i],1);
}
for(int i=1;i<=m;i++){
x=q[i].x;y=q[i].y;
if(q[i].flag==0){
y=lower_bound(b+1,b+tot+1,y)-b;
updata(root[col[x]],root[col[x]],1,n,id[x],-1);
updata(root[y],root[y],1,n,id[x],1);
col[x]=y;
}
else{
q[i].z=lower_bound(b+1,b+tot+1,q[i].z)-b;
printf("%d\n",solve(x,y,q[i].z));
}
}
} int main()
{
work();
return 0;
}

4999: This Problem Is Too Simple!的更多相关文章

  1. bzoj 4999: This Problem Is Too Simple!

    Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...

  2. BZOJ 4999: This Problem Is Too Simple! DFS序+LCA+树状数组+离线

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) , ...

  3. 【BZOJ4999】This Problem Is Too Simple!(线段树)

    [BZOJ4999]This Problem Is Too Simple!(线段树) 题面 BZOJ 题解 对于每个值,维护一棵线段树就好啦 动态开点,否则空间开不下 剩下的就是很简单的问题啦 当然了 ...

  4. 【BZOJ4999】This Problem Is Too Simple! 离线+树状数组+LCA

    [BZOJ4999]This Problem Is Too Simple! Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2 ...

  5. [BZOJ 4999]This Problem Is Too Simple!

    [BZOJ 4999]This Problem Is Too Simple! 题目 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将 ...

  6. bzoj4999 This Problem Is Too Simple!

    Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...

  7. 2019.03.09 bzoj4999: This Problem Is Too Simple!(树链剖分+线段树动态开点)

    传送门 题意:给一颗树,每个节点有个初始值,要求支持将i节点的值改为x或询问i节点到j节点的路径上有多少个值为x的节点. 思路: 考虑对每种颜色动态开点,然后用树剖+线段树维护就完了. 代码: #in ...

  8. BZOJ4999: This Problem Is Too Simple!树链剖分+动态开点线段树

    题目大意:将某个节点的颜色变为x,查询i,j路径上多少个颜色为x的点... 其实最开始一看就是主席树+树状数组+DFS序...但是过不去...MLE+TLE BY FCWWW 其实树剖裸的一批...只 ...

  9. BZOJ4999:This Problem Is Too Simple!(DFS序&树上差分&线段树动态开点:区间修改单点查询)

    Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...

随机推荐

  1. Linux下进程间通信--共享内存:最快的进程间通信方式

    共享内存: 一.概念: 共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式.两个不同进程A.B共享内存的意思是,同一块物理内存被映射到进程A.B各自的进程地址空间. 进程A可以即时看到进程B ...

  2. Linux学习--线程控制

    关于线程控制,主要就是几个模块,我们一个一个消灭.消化: 一.线程创建: 1.先来看看在Linux环境下的线程创建函数: 分析:意思很明显: 1.函数名是 pthread_create  : 2.功能 ...

  3. java方法的定义格式

    Java的方法类似于其他语言的函数,是一段用来完成特定功能的代码片段,声明格式为: [修饰符1  修饰符2  …..] 返回值类型  方法名( 形式参数列表 ){ Java 语句;… … … } 例如 ...

  4. 第四十四条:为所有导出的API元素编写文档注释

    简而言之,要为API编写文档,文档注释是最好,最有效的途径.对于所有可导出的API元素来说,使用文档注释应该被看作是强制性的.要 采用一致的风格来遵循标准的约定.记住,在文档注释内部出现任何的HTML ...

  5. html{font-size:62.5%}

    为什么要使用html,body{font-size:62.5%}? 使用以下代码查看浏览器的初始font-size: <!DOCTYPE html><html><head ...

  6. IE浏览器支持响应式网站设计

    目前响应式网站设计比较流行, 下面是摘自百度百科有关响应式设计的定义. 响应式网站设计是一种网络页面设计布局,其理念是:集中创建页面的图片排版大小,可以智能地根据用户行为以及使用的设备环境进行相对应的 ...

  7. dede观看总结自己总结

    知识点一:{dede:arclist channelid="18" addfields="language,pfz" limit="0,5" ...

  8. Postgres中postmaster代码解析(上)

    之前我的一些文章都是在说Postgres的一些查询相关的代码.但是对于Postgres服务端是如何启动,后台进程是如何加载,服务端在哪里以及如何监听客户端的连接都没有一个清晰的逻辑.那么今天我来说说P ...

  9. 新概念英语(1-109)A Good Idea

    Lesson 109 A good idea 好主意 Listen to the tape then answer this question. What does Jane have with he ...

  10. ELK学习总结(4-2)关于导入数据

    用REST API的_bulk来批量插入,可以达到5到10w条每秒 把数据写进json文件,然后再通过批处理,执行文件插入数据: 1.先定义一定格式的json文件,文件不能过大,过大会报错 2.后用c ...