某变换好题。不过听说还有O(2^n*n^2)DP的……

Description

  给定一个n*m的01矩阵,你可以选择对任意行和任意列取反,使得最终“1”的数量尽量少。

Input

  第一行两个整数n,m。
  接下来n行,每行m个字符,描述一个01矩阵。

Output

  一个整数表示最少的1的数量。

Sample Input

  3 4
  0110
  1010
  0111

Sample Output

  2

HINT

  1 <= n <= 20,1 <= m <= 100000。

Solution

  首先发现矩阵只有20行,经过一番脑补,可以把这二十行压成一个数。

  然后我们就得到了m个数。

  然后在行上的取反就相当于将这m个数同时异或上同一个数。

  然后我们要求的就是,找出一个数,使得这m个数同时异或上这个数后,每个数的二进制位中的0和1的个数的最小值总和最小。

  我们设ans[x]为当异或的数为x时的答案,a数组用来存放m个数,d[x]为x的二进制位中0和1的个数的最小值。

  所以:

    

  我们稍微改一改,用w[x]表示在m个数中,为x的数有多少个:

    

  等等,是不是发现了什么?这不就是卷积FWT的式子吗?

    

  时间复杂度O(nm+2^n*n)。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MS 23
#define MN 100005
#define MM 1100005
using namespace std;
char c[MS][MN];
int a[MN];
ll A[MM],B[MM],C[MM];
int n,m,ans; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} void FWT(ll* a,int len,bool g)
{
register int wt,st,i;
ll x,y;
for (wt=;wt<len;wt<<=)
for (st=;st<len;st+=wt<<)
for (i=;i<wt;++i)
{
x=a[st+i]; y=a[st+wt+i];
a[st+i]=x+y; a[st+wt+i]=x-y;
if (g) a[st+i]>>=,a[st+wt+i]>>=;
}
} int main()
{
register int i,j;
n=read(); m=read(); ans=n*m;
for (i=;i<n;++i) scanf("%s",c[i]+);
for (i=n-;i>=;--i)
for (j=;j<=m;++j) a[j]=(a[j]<<)+c[i][j]-'';
for (i=;i<=m;++i) ++A[a[i]];
for (i=;i<(<<n);++i) B[i]=B[i>>]+(i&);
for (i=;i<(<<n);++i) B[i]=min(B[i],n-B[i]);
FWT(A,<<n,false); FWT(B,<<n,false);
for (i=;i<(<<n);++i) C[i]=A[i]*B[i];
FWT(C,<<n,true);
for (i=;i<(<<n);++i) ans=min(ans,(int)C[i]);
printf("%d",ans);
}

Last Word

  如果把FWT中的if语句改成(x+y)/g,(x-y)/g,效率会慢5倍,除法真是个可怕的东西。

[Codeforces]663E Binary Table的更多相关文章

  1. [CodeForces 663E] - Binary Table(FWT)

    题目 Codeforces 题目链接 分析 大佬博客,写的很好 本蒟蒻就不赘述了,就是一个看不出来的异或卷积 精髓在于 mask对sta的影响,显然操作后的结果为mask ^ sta AC code ...

  2. Codeforces #662C Binary Table

    听说这是一道$ Tourist$现场没出的题 Codeforces #662C 题意: 给定$n*m的 01$矩阵,可以任意反转一行/列($0$变$1$,$1$变$0$),求最少$ 1$的数量 $ n ...

  3. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  4. CodeForces - 662C Binary Table (FWT)

    题意:给一个N*M的0-1矩阵,可以进行若干次操作,每次操作将一行或一列的0和1反转,求最后能得到的最少的1的个数. 分析:本题可用FWT求解. 因为其0-1反转的特殊性且\(N\leq20\),将每 ...

  5. CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT

    C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...

  6. Codeforces 417E Square Table(随机算法)

    题目链接:Codeforces 417E Square Table 题目大意:给出n和m.要求给出一个矩阵,要求每一列每一行的元素的平方总和是一个平方数. 解题思路:构造.依照 a a a b a a ...

  7. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  8. 【CF662C】Binary Table 按位处理

    [CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le ...

  9. CodeForces 1251B --- Binary Palindromes

    [CodeForces 1251B --- Binary Palindromes] Description A palindrome is a string t which reads the sam ...

随机推荐

  1. 20145237 《Java程序设计》第10周学习总结

    20145237 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 •网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来. •java.n ...

  2. 为label或者textView添加placeHolder

    Tip:使用textView的代理需要在头文件中加入: <UITextViewDelegate> h文件 @interface FeedbackViewController : UIVie ...

  3. python subprocess模块使用总结

    一.subprocess以及常用的封装函数运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python ...

  4. Linux实战案例(2)实例讲解使用软连接的场景和过程

    =================================== 使用场景:使用软连接简化版本切换动作 进入操作目录, cd /opt/modules/ ==================== ...

  5. OAuth2.0学习(1-2)OAuth2.0的一个企业级应用场景 - 新浪开放平台微博OAuth2.0认证

    http://open.weibo.com/wiki/%E9%A6%96%E9%A1%B5 开发者可以先浏览OAuth2.0的接口文档,熟悉OAuth2.0的接口及参数的含义,然后我们根据应用场景各自 ...

  6. SpringCloud的服务网关zuul

    演示如何使用api网关屏蔽各服务来源 一.概念和定义 1.zuul最终还是使用Ribbon的,顺便测试一下Hystrix断路保护2.zuul也是一个EurekaClient,访问服务注册中心,获取元数 ...

  7. bad interpreter:No such file or directory 解决方法

    今天在执行一个从网上考下来的脚本的时候,出现了下面的错误: Linux下面一个脚本死活也运行不了, 我检查了数遍,不可能有错. 提示:bad interpreter:No such file or d ...

  8. RxJava系列1(简介)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...

  9. Linux系统的基本使用

    曾经在网上看到一个一篇文章,说到了Linux学习的入门与学习技巧,也就是:初学者可以自己安装虚拟机,然后把linux常用命令例如cd.ls.chmod.useradd.vi等等多练习几十遍,把自己敲打 ...

  10. mysql中出现Unknown column 'qwe' in 'field list'的错误

    下面是我建表的代码 输入数据的代码 可以看到出现了类似Unknown column 'qwe' in 'field list'的错误 当时看了好久改了又改都没有找到错误,直道我在一次打C语言代码的过程 ...