hdu 3433 A Task Process 二分+dp
A Task Process
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1332 Accepted Submission(s): 656
as soon as possible. You should note that the workers are working simultaneously.
In each case, the first line contains three integers N(1<=N<=50), X,Y(1<=X,Y<=200). Then there are N lines, each line contain two integers ai, bi (1<=ai, bi <=1000).
Sample Input
3
2 2 2
1 10
10 1
2 2 2
1 1
10 10 3 3 3
2 7
5 5
7 2
Sample Output
Case 1: 2
Case 2: 4
Case 3: 6
/*
hdu 3433 A Task Process 二分+dp(卒) dp方面毕竟若,着实没有想出来状态转移方程
主要是数据特别小,可以考虑二分答案然后通过判断来解决
如果知道了能够使用的时间limi.假设dp[i][j]表示前i个人完成j个A任务时最多能完成多少
个B任务
转移方程:
dp[i][j] = (dp[i-1][j-k] + (limi-k*a[i])*b[i],dp[i][j]) hhh-2016-04-10 21:02:38
*/
#include <iostream>
#include <cstdio>
#include <cstring>
typedef long long ll;
using namespace std;
const int mod = 1e9+7;
const int maxn = 205;
int a[maxn],b[maxn];
int x,y,n;
int dp[maxn][maxn];
bool cal(int limi)
{
//dp[i][j] 前i个人完成j个A任务的情况下,最多完成多少个B
memset(dp,-1,sizeof(dp));
for(int i =0; i <= x && i*a[1] <= limi; i++)
{
dp[1][i] = (limi-i*a[1])/b[1];
} for(int i = 2; i <= n; i++)
{
for(int j = 0; j <= x; j++)
{
for(int k = 0; k*a[i] <= limi && k <= j; k++)
{
if(dp[i-1][j-k] >= 0)
dp[i][j] = max(dp[i][j],dp[i-1][j-k]+(limi-k*a[i])/b[i]);
//如果不是同一个工人,那么工作进而同时进行
}
}
}
return dp[n][x] >= y;
} int main()
{
int T;
int cas = 1;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&x,&y);
int ma = 0;
for(int i =1 ; i <= n; i++)
{
scanf("%d%d",&a[i],&b[i]);
ma = max(ma,a[i]);
}
int l = 0,r = ma*x;
int ans = 0;
while(l <= r)
{
int mid = (l+r)>>1; if(cal(mid))
{
ans = mid;
r = mid-1;
}
else
l = mid + 1;
}
printf("Case %d: %d\n",cas++,ans);
}
return 0;
}
hdu 3433 A Task Process 二分+dp的更多相关文章
- 二分+DP HDU 3433 A Task Process
HDU 3433 A Task Process Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- hdu 3433 A Task Process(dp+二分)
题目链接 题意:n个人, 要完成a个x任务, b个y任务. 求,最短的时间 思路:由于时间较大,用 二分来找时间. dp[i][j]表示 i个人完成j个x任务, 最多能完成的y任务个数 这个题 不是很 ...
- hdu3433A Task Process( 二分dp)
链接 二分时间,在时间内dp[i][j]表示截止到第i个人已经做了j个A最多还能做多少个B #include <iostream> #include<cstdio> #incl ...
- Codeforces 660C - Hard Process - [二分+DP]
题目链接:http://codeforces.com/problemset/problem/660/C 题意: 给你一个长度为 $n$ 的 $01$ 串 $a$,记 $f(a)$ 表示其中最长的一段连 ...
- hdu 3247 AC自动+状压dp+bfs处理
Resource Archiver Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Ot ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- HDU 1231 最大连续子序列 --- 入门DP
HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...
- hdu 4778 Gems Fight! 博弈+状态dp+搜索
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4102743.html 题目链接:hdu 4778 Gems Fight! 博弈+状态dp+搜 ...
- Hadoop:Task process exit with nonzero status of 1 异常
在运行hadoop程序时经常遇到异常 java.io.IOException: Task process exit with nonzero status of 1.网上很多博文都说是磁盘不够的问题. ...
随机推荐
- 解决yii2中 Class yii/web/JsonParser does not exist, ReflectionException问题
最近在调试RESTful API示例时,出现以下错误: { "name": "Exception", "message": "Cl ...
- 如何用UPA优化性能?先读懂这份报告!
一.概述 打开一份UPA报告时,最先看到的就是概述页面,这也是我们推荐用户第一时间关注的页面.概述页面一开始会列出测试的基本信息,并根据腾讯游戏的性能标准,给出本次测试的结果(通过,不通过和警告): ...
- WPF 自定义ItemsControl/ListBox/ListView控件样式
一.前言 ItemsControl.ListBox.ListView这三种控件在WPF中都可作为列表信息展示控件.我们可以通过修改这三个控件的样式来展示我们的列表信息. 既然都是展示列表信息的控件,那 ...
- springboot字符集乱码
入门扫盲:https://www.2cto.com/database/201701/584442.html 1.修改springweb类bug 2.数据库连接配置 3.数据库字符集 https://w ...
- Docker学习笔记 - Docker的远程访问
学习内容: 配置客户端与守护进程的远程访问 服务端配置-H选项: 使服务端支持远程被访问 客户端使用-H选项: 使客户端访问远程服务端 本地环境DOCKER_HOST设置客户端访问的默认服务端地址 准 ...
- 浅谈移动端适配-rem
对于移动端开发来说,无可避免的就是直面各种设备不同分辨率和不同DPR(设备像素比)的问题,在此忽略其他兼容性问题的探讨. 一. 移动端开发有关于像素的概念: 1.设备像素(dp),也叫物理像素.指设备 ...
- windows下nginx代理ftp服务器
我所在的开发环境里,nginx和ftp在同一台服务器. ftp根目录: nginx的配置: 在nginx.conf中加入: server { listen ; server_name localhos ...
- JS中的数据类型和转换
一.JS中的数据类型 js中的数据类型可以分为五种:number .string .boolean. underfine .null. number:数字类型 ,整型浮点型都包括. string:字符 ...
- Beautiful Soup常见的解析器
Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,如果我们不安装它,则 Python 会使用 Python默认的解析器,lxml 解析器更加强大,速度更快 ...
- CSS3 3D立方体效果
<!DOCTYPE HTML><html><head><meta http-equiv="Content-Type" content=&q ...