来自FallDream的博客,未经允许,请勿转载,谢谢

---------------------------------------------

给定n,求$S(n)=\sum_{i=1}^{n}\varphi(i)$  n<=$10^{10}$

跟求莫比乌斯函数前缀和一样的做法,也可以推出$S(n)=\frac{n*(n+1)}{2}-\sum_{i=2}^{n}S(i)$,具体推法可以戳这里

另外,我们还可以从gcd入手。

数对$\left(x,y\right),x\leqslant y$共有$\frac{n*(n+1)}{2}$种,那么$S(n)=\sum1\left(gcd(x,y)=1, x\leqslant y\leqslant n\right)) $

又$num\left(gcd(x,y)=c\right)$的有$S(\lfloor n/c\rfloor)$种,所以$S(n)=\frac{n*(n+1)}{2}-\sum_{i=2}^{n}S(i)$

虽然推法不同,但是结果是一样的,然后记忆化搜索,复杂度$O(n^{\frac{2}{3}})$  用一个手写map加速,又是轻松rank1

然后latex真好用!!!!!

#include<iostream>
#include<cstdio>
#include<cmath>
#define MAXN 5000000
#define mod 2333333
#define ditoly 1000000007
#define ll long long
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
} struct my_map{
ll x,ans;int next;
}e[mod+];
int head[mod+],num=;
void ins(ll x,ll sum)
{
int j=x%mod;
e[++num]=(my_map){x,sum,head[j]};
head[j]=num;
} int phi[MAXN+];
ll ans=; ll calc(ll n)
{
if(n<=MAXN) return phi[n];
for(int i=head[n%mod];i;i=e[i].next)
if(e[i].x==n)return e[i].ans;
ll sum=(n%ditoly)*((n+)%ditoly)%ditoly*%ditoly;
int q=sqrt(n);
for(int i=;i<=q;i++)
sum=(sum-calc(n/i))%ditoly;
q=n/(q+);
for(int i=;i<=q;i++)
sum=(sum-((n/i-(n/(i+)))%ditoly*calc(i))+ditoly)%ditoly;
ins(n,sum);
return sum;
} int main()
{
for(int i=;i<=MAXN;i++)phi[i]=i;
for(int i=;i<=MAXN;i++)if(phi[i]==i)
{
phi[i]=i-;
for(int j=i<<;j<=MAXN;j+=i)
phi[j]=phi[j]/i*(i-);
}num=;
for(int i=;i<=MAXN;i++)phi[i]=(phi[i]+phi[i-])%ditoly;
cout<<calc(read())<<endl;
return ;
}

[51nod1239欧拉函数之和]的更多相关文章

  1. 51nod1239 欧拉函数之和

    跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...

  2. 杜教筛--51nod1239 欧拉函数之和

    求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...

  3. [51nod1239] 欧拉函数之和(杜教筛)

    题面 传送门 题解 话说--就一个杜教筛--刚才那道拿过来改几行就行了-- //minamoto #include<bits/stdc++.h> #define R register #d ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  6. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  7. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  8. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  9. 【51Nod 1239】欧拉函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...

随机推荐

  1. 使用 PHP 来做 Vue.js 的 SSR 服务端渲染

    对于客户端应用来说,服务端渲染是一个热门话题.然而不幸的是,这并不是一件容易的事,尤其是对于不用 Node.js 环境开发的人来说. 我发布了两个库让 PHP 从服务端渲染成为可能.spatie/se ...

  2. es6对象字面量增强

    相对于ES5,ES6的对象字面量得到了很大程度的增强.这些改进我们可以输入更少的代码同时语法更易于理解.那就一起来看看对象增强的功能.对象字面量简写(Object Literal Shorthand) ...

  3. c# gridview 新增行

    string[] newRow = {"long","d","b"}; Gridview.Rows.Insert(Gridview.Rows ...

  4. python的模块和包

    ==模块== python语言的组织结构层次: 包->模块->代码文件->类->函数->代码块 什么是模块呢 可以把模块理解为一个代码文件的封装,这是比类更高一级的封装层 ...

  5. linux的脚本应用for循环答应变量

    #!/bin/bash for var in A B C ; do echo "var is $var" done

  6. apache的重写规则

    RewriteEngine OnRewriteCond %{REQUEST_FILENAME} .*\.(jpg|jpeg|gif|png) [NC]RewriteRule .* http://i8. ...

  7. ViurtualBox配置虚拟机Linux的网络环境

    之前可以使用VMware配置成功,让虚拟机和本地通信,虚拟机可以访问外网,但是VMware体积太大了,最后终于把virtualBox也配置成功,也使得两者兼备 环境:本地windows7 64位专业版 ...

  8. Django REST framework+Vue 打造生鲜超市(一)

    一.项目介绍 1.1.掌握的技术 Vue + Django Rest Framework 前后端分离技术 彻底玩转restful api 开发流程 Django Rest Framework 的功能实 ...

  9. 深度学习之 cnn 进行 CIFAR10 分类

    深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...

  10. Lintcode373 Partition Array by Odd and Even solution 题解

    [题目描述] Partition an integers array into odd number first and even number second. 分割一个整数数组,使得奇数在前偶数在后 ...