Description

人的一生不仅要靠自我奋斗,还要考虑到历史的行程。

历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势。

你发现在历史的不同时刻,不断的有相同的事情发生。比如,有两个人同时在世纪之交 11 年的时候上台,同样喜欢与洋人谈笑风生,同样提出了以「三」字开头的理论。

你发现,一件事情可以看成是这个 01 串的一个前缀,这个前缀最右边的位置就是这个事情的结束时间。

两件事情的相似度可以看成,这两个前缀的最长公共后缀长度。

现在你很好奇,在一段区间内结束的事情中最相似的两件事情的相似度是多少呢?

Solution

考虑暴力做法,离线询问

因为两个串的最长公共后缀,就是所代表节点的 \(lca\) 的 \(len\)

每一次加入一个前缀,在 \(parent\) 树上往上跳,如果一个点被跳过我们就更新答案

因为右端点固定时,左端点越大,对询问的贡献肯定越多,所以直接覆盖掉这个节点事件的下标(也就是 \(pos\)),所以我们维护这个节点子树内的最大 \(pos\) 值就行了

但是还有一个左端点限制,我们开一个左端点为下标的树状数组维护一下就好了

实际上这个过程就是 \(LCT\) 的 \(access\),那么用 \(LCT\) 做这个过程复杂度就可以均摊为 \(access\) 的复杂度了

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())x=x*10+(c&15);x*=f;
}
int fa[N],ch[N][2],len[N],cur=1,cnt=1,n,Q,pos[N];
char s[N];int tr[N],ans[N];
struct data{int x,id;};
vector<data>v[N];vector<data>::iterator it;
inline void add(int x,int y){for(int i=x;i>=1;i-=(i&(-i)))tr[i]=max(tr[i],y);}
inline int qry(int x){
int ret=0;
for(int i=x;i<=n;i+=(i&(-i)))ret=max(ret,tr[i]);
return ret;
}
namespace lct{
int fa[N],ch[N][2],w[N],la[N];
inline void mark(int x,int y){w[x]=y;la[x]=y;}
inline bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
inline void rotate(int x){
int y=fa[x];bool t=ch[y][1]==x;
ch[y][t]=ch[x][!t];fa[ch[y][t]]=y;
ch[x][!t]=y;fa[x]=fa[y];
if(!isrt(y))ch[fa[y]][ch[fa[y]][1]==y]=x;
fa[y]=x;
}
inline void pushdown(int x){
if(!la[x])return ;
mark(ch[x][0],la[x]);mark(ch[x][1],la[x]);la[x]=0;
}
inline void Push(int x){if(!isrt(x))Push(fa[x]);pushdown(x);}
inline void splay(int x){
Push(x);
while(!isrt(x)){
int y=fa[x],p=fa[y];
if(isrt(y))rotate(x);
else if((ch[p][0]==y)==(ch[y][0]==x))rotate(y),rotate(x);
else rotate(x),rotate(x);
}
}
inline void access(int x,int id){
int y=0;
while(x)splay(x),ch[x][1]=y,add(w[x],len[x]),x=fa[y=x];
mark(y,id);
}
}
inline void ins(int c){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[cur]=fa[q]=nt;
for(;p && ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>Q;
scanf("%s",s+1);
for(int i=1;i<=n;i++)ins(s[i]-'0'),pos[i]=cur;
for(int i=1;i<=Q;i++)gi(x),gi(y),v[y].push_back((data){x,i});
for(int i=2;i<=cnt;i++)lct::fa[i]=fa[i];
for(int i=1;i<=n;i++){
lct::access(pos[i],i);
for(it=v[i].begin();it!=v[i].end();++it)ans[it->id]=qry(it->x);
}
for(int i=1;i<=Q;i++)printf("%d\n",ans[i]);
return 0;
}

LOJ #6041. 事情的相似度的更多相关文章

  1. 【LOJ#6041】事情的相似度(后缀自动机)

    [LOJ#6041]事情的相似度(后缀自动机) 题面 LOJ 题解 \(\mbox{YCB}\)搬了这道题目...\(\mbox{QwQ}\) 还是用到\(lcp\)就是\(parent\)树上的\( ...

  2. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  3. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  4. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  5. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

  7. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  8. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  9. #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]

    SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...

随机推荐

  1. TED - How To Get Better At The Things You Care About

    TED01 - How To Get Better At The Things You Care About 昨天我发布了攻克英语口语的宣言,今天就行动.TED是我们学习口语的好地方,本着学以致用的原 ...

  2. Software Engineering-HW3 264&249

    title: Software Engineering-HW3 date: 2017-10-05 10:04:08 tags: HW --- 小组成员 264 李世钰 249 王成科 项目地址 htt ...

  3. Beta集合

    Beta冲刺day1 Beta冲刺day2 Beta冲刺day3 Beta冲刺day4 Beta冲刺day5 Beta冲刺day6 Beta冲刺day7 测试总结 总结合集 Beta预备

  4. UIImage 内存细节

    最近的一个项目,有大量的scrollView+imageView,当iPad启动较多程序,再启动自己的这个程序的时候,就爆内存退出了-- 后来把所有的生成图片的方法,全部由imageNamed改成了i ...

  5. JAVA_SE基础——2.环境变量的配置&测试JDK

    哈喽,利用晚上的空余时间再写篇心的~~~  谢谢大家 前一篇文章 JAVA_SE基础--JDK&JRE下载及安装http://blog.csdn.net/thescript_j/article ...

  6. Python struct模块

    有的时候需要用python处理二进制数据,比如,存取文件,socket操作时.这时候,可以使用python的struct模块来完成.可以用 struct来处理c语言中的结构体. struct模块中最重 ...

  7. 谈谈ASP.NET Core中的ResponseCaching

    前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...

  8. JS的if和switch

    var aa=parseInt(prompt("请输入你的年龄")); //定义输入 if(aa<18){ //输出小于18,返回值少年 alert("少年&quo ...

  9. java获取本类路径

    (1).Test.class.getResource("") 得到的是当前类FileTest.class文件的URI目录.不包括自己! (2).Test.class.getReso ...

  10. hadoop2.6.0实践:002 检查伪分布式环境搭建

    1.检查网络配置[root@hadoop-master ~]# cat /etc/sysconfig/networkNETWORKING=yesHOSTNAME=hadoop-masterGATEWA ...