LOJ #6041. 事情的相似度
Description
人的一生不仅要靠自我奋斗,还要考虑到历史的行程。
历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势。
你发现在历史的不同时刻,不断的有相同的事情发生。比如,有两个人同时在世纪之交 11 年的时候上台,同样喜欢与洋人谈笑风生,同样提出了以「三」字开头的理论。
你发现,一件事情可以看成是这个 01 串的一个前缀,这个前缀最右边的位置就是这个事情的结束时间。
两件事情的相似度可以看成,这两个前缀的最长公共后缀长度。
现在你很好奇,在一段区间内结束的事情中最相似的两件事情的相似度是多少呢?
Solution
考虑暴力做法,离线询问
因为两个串的最长公共后缀,就是所代表节点的 \(lca\) 的 \(len\)
每一次加入一个前缀,在 \(parent\) 树上往上跳,如果一个点被跳过我们就更新答案
因为右端点固定时,左端点越大,对询问的贡献肯定越多,所以直接覆盖掉这个节点事件的下标(也就是 \(pos\)),所以我们维护这个节点子树内的最大 \(pos\) 值就行了
但是还有一个左端点限制,我们开一个左端点为下标的树状数组维护一下就好了
实际上这个过程就是 \(LCT\) 的 \(access\),那么用 \(LCT\) 做这个过程复杂度就可以均摊为 \(access\) 的复杂度了
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())x=x*10+(c&15);x*=f;
}
int fa[N],ch[N][2],len[N],cur=1,cnt=1,n,Q,pos[N];
char s[N];int tr[N],ans[N];
struct data{int x,id;};
vector<data>v[N];vector<data>::iterator it;
inline void add(int x,int y){for(int i=x;i>=1;i-=(i&(-i)))tr[i]=max(tr[i],y);}
inline int qry(int x){
int ret=0;
for(int i=x;i<=n;i+=(i&(-i)))ret=max(ret,tr[i]);
return ret;
}
namespace lct{
int fa[N],ch[N][2],w[N],la[N];
inline void mark(int x,int y){w[x]=y;la[x]=y;}
inline bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
inline void rotate(int x){
int y=fa[x];bool t=ch[y][1]==x;
ch[y][t]=ch[x][!t];fa[ch[y][t]]=y;
ch[x][!t]=y;fa[x]=fa[y];
if(!isrt(y))ch[fa[y]][ch[fa[y]][1]==y]=x;
fa[y]=x;
}
inline void pushdown(int x){
if(!la[x])return ;
mark(ch[x][0],la[x]);mark(ch[x][1],la[x]);la[x]=0;
}
inline void Push(int x){if(!isrt(x))Push(fa[x]);pushdown(x);}
inline void splay(int x){
Push(x);
while(!isrt(x)){
int y=fa[x],p=fa[y];
if(isrt(y))rotate(x);
else if((ch[p][0]==y)==(ch[y][0]==x))rotate(y),rotate(x);
else rotate(x),rotate(x);
}
}
inline void access(int x,int id){
int y=0;
while(x)splay(x),ch[x][1]=y,add(w[x],len[x]),x=fa[y=x];
mark(y,id);
}
}
inline void ins(int c){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[cur]=fa[q]=nt;
for(;p && ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>Q;
scanf("%s",s+1);
for(int i=1;i<=n;i++)ins(s[i]-'0'),pos[i]=cur;
for(int i=1;i<=Q;i++)gi(x),gi(y),v[y].push_back((data){x,i});
for(int i=2;i<=cnt;i++)lct::fa[i]=fa[i];
for(int i=1;i<=n;i++){
lct::access(pos[i],i);
for(it=v[i].begin();it!=v[i].end();++it)ans[it->id]=qry(it->x);
}
for(int i=1;i<=Q;i++)printf("%d\n",ans[i]);
return 0;
}
LOJ #6041. 事情的相似度的更多相关文章
- 【LOJ#6041】事情的相似度(后缀自动机)
[LOJ#6041]事情的相似度(后缀自动机) 题面 LOJ 题解 \(\mbox{YCB}\)搬了这道题目...\(\mbox{QwQ}\) 还是用到\(lcp\)就是\(parent\)树上的\( ...
- 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度
Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...
- 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...
- 「雅礼集训 2017 Day7」事情的相似度
「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...
- loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)
题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...
- LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树
Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...
- LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度
我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...
- loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)
题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...
- #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]
SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...
随机推荐
- PTA常见错误
1.最常犯的错误. 格式错误 在PTA程序检测中,输入输出要严格按照题目要求.输出的格式要完全按照题目要求来,该空格地方空格,该换行要换行.否则,就算你运行结果是对的,PTA还是提示你格式错误 比如下 ...
- 20162323周楠《Java程序设计与数据结构》第八周总结
20162323周楠 2016-2017-2 <程序设计与数据结构>第八周学习总结 教材学习内容总结 一个异常是一个对象,它定义了并不轻易出现的或是错误的情形 异常由程序或运行时环境抛出, ...
- 一个轻量级iOS安全框架:SSKeyChain
摘要 SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账户进行访问,包括读取.删除和设置.SSKeyChain的作者是大名鼎鼎的SSToolkit的作者samsof ...
- 算法第四版学习笔记之优先队列--Priority Queues
软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...
- 0基础菜鸟学前端之Vue.js
简介:0基础前端菜鸟,啃了将近半月前端VUE框架,对前端知识有了初步的了解.下面总结一下这段时间的学习心得. 文章结构 前端基础 Vue.js简介 Vue.js常用指令 Vue.js组件 Vue.js ...
- Spark快速入门
Spark 快速入门 本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...
- gradle入门(1-6)将Java项目从maven迁移到gradle
gradle项目与maven项目相互转化(转) 转自: http://www.cnblogs.com/yjmyzz/p/gradle-to-maven.html 一.maven项目->gradl ...
- maven入门(1-3)构建简单的maven项目
1. 用Maven 命令创建一个简单的Maven项目 在cmd中运行如下命令: mvn archetype:generate -DgroupId=com.mycompany.app -Dartifac ...
- Bootstrap 做一个简单的母版页
随便搭的一个母版页,不太好看,只是为了看效果....请勿吐槽. 效果如图: 一.新建母版页,引入Bootstrap相关js文件 <link href="../css/bootstrap ...
- SpringMVC(一):搭建一个SpringMVC helloword项目
操作步骤: 1)下载spring framework开发包,给eclipse安装spring开发插件,如何安装开发插件&下载开发包请参考我的博文:<Spring(一):eclipse上安 ...