Description

人的一生不仅要靠自我奋斗,还要考虑到历史的行程。

历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势。

你发现在历史的不同时刻,不断的有相同的事情发生。比如,有两个人同时在世纪之交 11 年的时候上台,同样喜欢与洋人谈笑风生,同样提出了以「三」字开头的理论。

你发现,一件事情可以看成是这个 01 串的一个前缀,这个前缀最右边的位置就是这个事情的结束时间。

两件事情的相似度可以看成,这两个前缀的最长公共后缀长度。

现在你很好奇,在一段区间内结束的事情中最相似的两件事情的相似度是多少呢?

Solution

考虑暴力做法,离线询问

因为两个串的最长公共后缀,就是所代表节点的 \(lca\) 的 \(len\)

每一次加入一个前缀,在 \(parent\) 树上往上跳,如果一个点被跳过我们就更新答案

因为右端点固定时,左端点越大,对询问的贡献肯定越多,所以直接覆盖掉这个节点事件的下标(也就是 \(pos\)),所以我们维护这个节点子树内的最大 \(pos\) 值就行了

但是还有一个左端点限制,我们开一个左端点为下标的树状数组维护一下就好了

实际上这个过程就是 \(LCT\) 的 \(access\),那么用 \(LCT\) 做这个过程复杂度就可以均摊为 \(access\) 的复杂度了

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())x=x*10+(c&15);x*=f;
}
int fa[N],ch[N][2],len[N],cur=1,cnt=1,n,Q,pos[N];
char s[N];int tr[N],ans[N];
struct data{int x,id;};
vector<data>v[N];vector<data>::iterator it;
inline void add(int x,int y){for(int i=x;i>=1;i-=(i&(-i)))tr[i]=max(tr[i],y);}
inline int qry(int x){
int ret=0;
for(int i=x;i<=n;i+=(i&(-i)))ret=max(ret,tr[i]);
return ret;
}
namespace lct{
int fa[N],ch[N][2],w[N],la[N];
inline void mark(int x,int y){w[x]=y;la[x]=y;}
inline bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
inline void rotate(int x){
int y=fa[x];bool t=ch[y][1]==x;
ch[y][t]=ch[x][!t];fa[ch[y][t]]=y;
ch[x][!t]=y;fa[x]=fa[y];
if(!isrt(y))ch[fa[y]][ch[fa[y]][1]==y]=x;
fa[y]=x;
}
inline void pushdown(int x){
if(!la[x])return ;
mark(ch[x][0],la[x]);mark(ch[x][1],la[x]);la[x]=0;
}
inline void Push(int x){if(!isrt(x))Push(fa[x]);pushdown(x);}
inline void splay(int x){
Push(x);
while(!isrt(x)){
int y=fa[x],p=fa[y];
if(isrt(y))rotate(x);
else if((ch[p][0]==y)==(ch[y][0]==x))rotate(y),rotate(x);
else rotate(x),rotate(x);
}
}
inline void access(int x,int id){
int y=0;
while(x)splay(x),ch[x][1]=y,add(w[x],len[x]),x=fa[y=x];
mark(y,id);
}
}
inline void ins(int c){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[cur]=fa[q]=nt;
for(;p && ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>Q;
scanf("%s",s+1);
for(int i=1;i<=n;i++)ins(s[i]-'0'),pos[i]=cur;
for(int i=1;i<=Q;i++)gi(x),gi(y),v[y].push_back((data){x,i});
for(int i=2;i<=cnt;i++)lct::fa[i]=fa[i];
for(int i=1;i<=n;i++){
lct::access(pos[i],i);
for(it=v[i].begin();it!=v[i].end();++it)ans[it->id]=qry(it->x);
}
for(int i=1;i<=Q;i++)printf("%d\n",ans[i]);
return 0;
}

LOJ #6041. 事情的相似度的更多相关文章

  1. 【LOJ#6041】事情的相似度(后缀自动机)

    [LOJ#6041]事情的相似度(后缀自动机) 题面 LOJ 题解 \(\mbox{YCB}\)搬了这道题目...\(\mbox{QwQ}\) 还是用到\(lcp\)就是\(parent\)树上的\( ...

  2. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  3. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  4. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  5. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

  7. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  8. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  9. #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]

    SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...

随机推荐

  1. PTA常见错误

    1.最常犯的错误. 格式错误 在PTA程序检测中,输入输出要严格按照题目要求.输出的格式要完全按照题目要求来,该空格地方空格,该换行要换行.否则,就算你运行结果是对的,PTA还是提示你格式错误 比如下 ...

  2. 20162323周楠《Java程序设计与数据结构》第八周总结

    20162323周楠 2016-2017-2 <程序设计与数据结构>第八周学习总结 教材学习内容总结 一个异常是一个对象,它定义了并不轻易出现的或是错误的情形 异常由程序或运行时环境抛出, ...

  3. 一个轻量级iOS安全框架:SSKeyChain

    摘要 SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账户进行访问,包括读取.删除和设置.SSKeyChain的作者是大名鼎鼎的SSToolkit的作者samsof ...

  4. 算法第四版学习笔记之优先队列--Priority Queues

    软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...

  5. 0基础菜鸟学前端之Vue.js

    简介:0基础前端菜鸟,啃了将近半月前端VUE框架,对前端知识有了初步的了解.下面总结一下这段时间的学习心得. 文章结构 前端基础 Vue.js简介 Vue.js常用指令 Vue.js组件 Vue.js ...

  6. Spark快速入门

    Spark 快速入门   本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...

  7. gradle入门(1-6)将Java项目从maven迁移到gradle

    gradle项目与maven项目相互转化(转) 转自: http://www.cnblogs.com/yjmyzz/p/gradle-to-maven.html 一.maven项目->gradl ...

  8. maven入门(1-3)构建简单的maven项目

    1. 用Maven 命令创建一个简单的Maven项目 在cmd中运行如下命令: mvn archetype:generate -DgroupId=com.mycompany.app -Dartifac ...

  9. Bootstrap 做一个简单的母版页

    随便搭的一个母版页,不太好看,只是为了看效果....请勿吐槽. 效果如图: 一.新建母版页,引入Bootstrap相关js文件 <link href="../css/bootstrap ...

  10. SpringMVC(一):搭建一个SpringMVC helloword项目

    操作步骤: 1)下载spring framework开发包,给eclipse安装spring开发插件,如何安装开发插件&下载开发包请参考我的博文:<Spring(一):eclipse上安 ...