Description

人的一生不仅要靠自我奋斗,还要考虑到历史的行程。

历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势。

你发现在历史的不同时刻,不断的有相同的事情发生。比如,有两个人同时在世纪之交 11 年的时候上台,同样喜欢与洋人谈笑风生,同样提出了以「三」字开头的理论。

你发现,一件事情可以看成是这个 01 串的一个前缀,这个前缀最右边的位置就是这个事情的结束时间。

两件事情的相似度可以看成,这两个前缀的最长公共后缀长度。

现在你很好奇,在一段区间内结束的事情中最相似的两件事情的相似度是多少呢?

Solution

考虑暴力做法,离线询问

因为两个串的最长公共后缀,就是所代表节点的 \(lca\) 的 \(len\)

每一次加入一个前缀,在 \(parent\) 树上往上跳,如果一个点被跳过我们就更新答案

因为右端点固定时,左端点越大,对询问的贡献肯定越多,所以直接覆盖掉这个节点事件的下标(也就是 \(pos\)),所以我们维护这个节点子树内的最大 \(pos\) 值就行了

但是还有一个左端点限制,我们开一个左端点为下标的树状数组维护一下就好了

实际上这个过程就是 \(LCT\) 的 \(access\),那么用 \(LCT\) 做这个过程复杂度就可以均摊为 \(access\) 的复杂度了

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())x=x*10+(c&15);x*=f;
}
int fa[N],ch[N][2],len[N],cur=1,cnt=1,n,Q,pos[N];
char s[N];int tr[N],ans[N];
struct data{int x,id;};
vector<data>v[N];vector<data>::iterator it;
inline void add(int x,int y){for(int i=x;i>=1;i-=(i&(-i)))tr[i]=max(tr[i],y);}
inline int qry(int x){
int ret=0;
for(int i=x;i<=n;i+=(i&(-i)))ret=max(ret,tr[i]);
return ret;
}
namespace lct{
int fa[N],ch[N][2],w[N],la[N];
inline void mark(int x,int y){w[x]=y;la[x]=y;}
inline bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
inline void rotate(int x){
int y=fa[x];bool t=ch[y][1]==x;
ch[y][t]=ch[x][!t];fa[ch[y][t]]=y;
ch[x][!t]=y;fa[x]=fa[y];
if(!isrt(y))ch[fa[y]][ch[fa[y]][1]==y]=x;
fa[y]=x;
}
inline void pushdown(int x){
if(!la[x])return ;
mark(ch[x][0],la[x]);mark(ch[x][1],la[x]);la[x]=0;
}
inline void Push(int x){if(!isrt(x))Push(fa[x]);pushdown(x);}
inline void splay(int x){
Push(x);
while(!isrt(x)){
int y=fa[x],p=fa[y];
if(isrt(y))rotate(x);
else if((ch[p][0]==y)==(ch[y][0]==x))rotate(y),rotate(x);
else rotate(x),rotate(x);
}
}
inline void access(int x,int id){
int y=0;
while(x)splay(x),ch[x][1]=y,add(w[x],len[x]),x=fa[y=x];
mark(y,id);
}
}
inline void ins(int c){
int p=cur;cur=++cnt;len[cur]=len[p]+1;
for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
if(!p)fa[cur]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[cur]=q;
else{
int nt=++cnt;len[nt]=len[p]+1;
memcpy(ch[nt],ch[q],sizeof(ch[q]));
fa[nt]=fa[q];fa[cur]=fa[q]=nt;
for(;p && ch[p][c]==q;p=fa[p])ch[p][c]=nt;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>Q;
scanf("%s",s+1);
for(int i=1;i<=n;i++)ins(s[i]-'0'),pos[i]=cur;
for(int i=1;i<=Q;i++)gi(x),gi(y),v[y].push_back((data){x,i});
for(int i=2;i<=cnt;i++)lct::fa[i]=fa[i];
for(int i=1;i<=n;i++){
lct::access(pos[i],i);
for(it=v[i].begin();it!=v[i].end();++it)ans[it->id]=qry(it->x);
}
for(int i=1;i<=Q;i++)printf("%d\n",ans[i]);
return 0;
}

LOJ #6041. 事情的相似度的更多相关文章

  1. 【LOJ#6041】事情的相似度(后缀自动机)

    [LOJ#6041]事情的相似度(后缀自动机) 题面 LOJ 题解 \(\mbox{YCB}\)搬了这道题目...\(\mbox{QwQ}\) 还是用到\(lcp\)就是\(parent\)树上的\( ...

  2. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  3. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  4. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  5. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

  7. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  8. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  9. #6041. 「雅礼集训 2017 Day7」事情的相似度 [set启发式合并+树状数组扫描线]

    SAM 两个前缀的最长后缀等价于两个点的 \(len_{lca}\) , 题目转化为求 \(l \leq x , y \leq r\) , \(max\{len_{lca(x,y)}\}\) // p ...

随机推荐

  1. C程序设计-----第1次作业

    一. PTA作业.    在完成PTA作业的时候我没有认真读题.每次都是提交完整代码 6-1(1) #include <stdio.h> //P++等价于(p)++还是等价于*(p++)? ...

  2. Flask 扩展 Flask-PyMongo

    安装 pip install Flask-PyMongo 初始化Pymongo实例 from flask import Flask from flask.ext.pymongo import PyMo ...

  3. 学大伟业 国庆Day2

    期望得分:30+100+0=130 实际得分:30+100+20=150 忍者钩爪 (ninja.pas/c/cpp) [问题描述] 小Q是一名酷爱钩爪的忍者,最喜欢飞檐走壁的感觉,有一天小Q发现一个 ...

  4. nyoj 第几是谁

    第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其按字典序排列,如果给出任意一种排列, ...

  5. LeetCode & Q119-Pascal's Triangle II-Easy

    Description: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3 ...

  6. big_menu菜单设置

    1.页面 <script> $(function(){ $('.subnav .content-menu .on').after('<a class="add fb&quo ...

  7. HTTP协议扫盲(八 )响应报文之 Transfer-Encoding=chunked方式

    一.什么是chunked编码? 分块传输编码(Chunked transfer encoding)是只在HTTP协议1.1版本(HTTP/1.1)中提供的一种数据传送机制.以往HTTP的应答中数据是整 ...

  8. bootstrap 之下拉多选

    效果如图: 一.HTML代码 <label class="col-sm-1 control-label text-right" for="ds_host" ...

  9. SQL Server 利用触发器对多表视图进行更新

    其步骤就是:利用update操作触发器产生的2个虚拟表[inserted]用来存储修改的数据信息和[deleted]表,然后将对应的数据更新到对应数据表中的字段信息中: 1.首先创建3个表: a.信息 ...

  10. leetcode算法: Find All Duplicates in an Array

    Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others ...