●BZOJ 3994 [SDOI2015]约数个数和
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3994
题解:
莫比乌斯反演
(先定义这样一个符号[x],如果x为true,则[x]=1,否则[x]=0)
首先有这么一个结论:
令d(x)表示x的约数的个数,那么
$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$
证明:
设$n=p1^{x1}p2^{x2}p3^{x3}\cdots pk^{xk},m=p1^{y1}p2^{y2}p3^{y3}\cdots pk^{yk}$
则$nm=p1^{x1+y1}p2^{x2+y2}p3^{x3+y3}\cdots pk^{xk+yk}$
由约数定理,$d(nm)=(x1+y1+1)(x2+y2+1)(x3+y3+1)\cdots(xk+yk+1)$
再设$i=p1^{a1}p2^{a2}p3^{a3}\cdots pk^{ak},j=p1^{b1}p2^{b2}p3^{b3}\cdots pk^{bk}$
如果gcd(i,j)=1,那么必须满足a1==0或者b1==0,
如果a1==0,则b1有y1种取值,如果b1==0,则a1有x1种取值,同时a1和b1还可以同时为0
那么就有(x1+y1+1)种情况,
即只考虑p1的指数,就有(x1+y1+1)种情况,同时枚举的i,j如果互质的话,后面的a2,b2,a3,b3...也满足这个条件,
所以满足条件的i,j的对数为$\prod (x_i+y_i+1)$ 和约数定理的形式相同。
有了这个结论,我们来化一化求ANS的式子
$ANS=\sum_{n=1}^{N}\sum_{m=1}^{M}d(nm)$
$\quad\quad=\sum_{n=1}^{N}\sum_{m=1}^{M}\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$
$\quad\quad=\sum_{i=1}^{N}\sum_{j=1}^{M}[gcd(i,j)==1]\lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{j} \rfloor$
同时由于刚刚入门mobius时,有这么一个式子:
$w(x)=\sum_{d|x}\mu(d)$ 若x==1则w(x)=1,否则w(x)=0
所以:$[gcd(i,j)==1]=\sum_{d|gcd(i,j)}\mu(d)$
那么继续:
$ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\lfloor \frac{N}{i} \rfloor \lfloor \frac{M}{j} \rfloor\sum_{d|gcd(i,j)}\mu(d)$
$\quad\quad=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{N/d}\lfloor \frac{N}{id}\rfloor\sum_{j=1}^{M/d}\lfloor \frac{M}{jd}\rfloor$
令$f(x)=\sum_{i=1}^{x}\lfloor \frac{x}{i}\rfloor$
则$ANS=\sum_{d=1}^{min(n,m)}\mu(d)f(\lfloor \frac{N}{d} \rfloor)f(\lfloor \frac{M}{d} \rfloor)$
而f(x)就是最开始的d(x)的前缀和。。。但是需要预处理的x的范围小了很多,可以用线筛完成。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define MAXN 50050
using namespace std;
ll f[MAXN];
int mu[MAXN];
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
f[1]=mu[1]=1;
for(int i=2,tmp,d;i<=50000;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1,f[i]=2;
for(int j=1;j<=pnt&&i<=50000/prime[j];j++){
np[i*prime[j]]=1; tmp=i; d=1;
while(tmp%prime[j]==0) tmp/=prime[j],d++;
f[i*prime[j]]=f[tmp]*(d+1);
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for(int i=2;i<=50000;i++)
f[i]+=f[i-1],mu[i]+=mu[i-1];
}
int main(){
Sieve(); ll ans;
int Case,n,m,mini;
scanf("%d",&Case);
while(Case--){
scanf("%d%d",&n,&m);
mini=min(n,m); ans=0;
for(int d=1,last;d<=mini;d=last+1){
last=min(n/(n/d),m/(m/d));
ans+=(mu[last]-mu[d-1])*f[n/d]*f[m/d];
}
printf("%lld\n",ans);
}
return 0;
}
●BZOJ 3994 [SDOI2015]约数个数和的更多相关文章
- BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Statu ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- 【刷题】BZOJ 3994 [SDOI2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...
- bzoj 3994 [SDOI2015]约数个数和——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...
- BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...
- BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
随机推荐
- c语言第一次作业——输入与输出格式
一.PTA实验作业 1.温度转换 本题要求编写程序,计算华氏温度150°F对应的摄氏温度.计算公式:C=5×(F−32)/9,式中:C表示摄氏温度,F表示华氏温度,输出数据要求为整型. 1.实验代码 ...
- java实现找一个数范围内所有的一
一.题目内容 给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数.要求:写一个函数 f(N) ,返回1 到 N 之间出现的 “1”的个数.例如 f(12) = 5. ...
- python实现简单tftp(基于udp)
tftp是基于udp的协议 实现简单的tftp,首先要有tftp的协议图. tftp默认接收端口为69,但每次有连接过来后,tftp会随机分配一个端口来专门为这个连接来服务. 操作码:1.上传 2.下 ...
- GPUImage滤镜效果翻译
#import"GPUImageBrightnessFilter.h"//亮度 #import"GPUImageExposureFilter.h"//曝光 #i ...
- codevs 3342 绿色通道
codevs 3342 绿色通道 http://codevs.cn/problem/3342/ 难度等级:黄金 题目描述 Description <思远高考绿色通道>(Green Pass ...
- node创建第一个应用
如果我们使用PHP来编写后端的代码时,需要Apache 或者 Nginx 的HTTP 服务器,并配上 mod_php5 模块和php-cgi. 从这个角度看,整个"接收 HTTP 请求并提供 ...
- nyoj 公约数和公倍数
公约数和公倍数 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 小明被一个问题给难住了,现在需要你帮帮忙.问题是:给出两个正整数,求出它们的最大公约数和最小公倍数. ...
- C语言使用vs2013进行编辑
由于vs2013是微软开发的产品所以在windows平台下无限兼容windows所有虽然比较大,但是还是比较值得 但是在运行C程序的遇到问题就是控制台一闪而过通过ctrl+F5执行也是不管用: #in ...
- Spring邮件发送2
前言:上一篇博文讲解了邮件发送的基础用法(数据是写死的),然而在实际开发中,大多数情况下邮件内容都是根据业务来动态生成的.所以在此篇博文中,我们将讲解邮件发送携带数据的几种方案. 一.解析自定义占位符 ...
- hadoop2.6.0实践:A03 例子验证
[hadoop@LexiaofeiN1 ~]$ hdfs dfs -ls /output/grep[hadoop@LexiaofeiN1 ~]$ hdfs dfs -rm -R /output/gre ...