【题目背景】

Y 家是世界上最大的家族,HJZ 是其中一员。

现在 Y 家人想要拍一张全家福,却发现这是一个十分复杂的问题. . . . . .

【题目描述】

Y 家一共有 n

其中每个人最多有一个直系祖先。

Y 家的家规十分严格,在拍全家福时每个人必须排在其直系祖先后面。如 HZY 不

可以排在 HJZ 前面,但 Little_Meat_Circle 就可以排在 HJZ 前。

现在 HJZ 想知道可以有多少种合法的排队方案。你只需要给出方案数对 109 + 7 取模的结果。

【输入格式】

从文件 relative.in 中读入数据。

第一行一个正整数 n 表示 Y 家的人数。

第二行 n 个整数 fi 表示第 i 个人的直系祖先编号。若 fi = 0 则表示第 i 个人没有 直系祖先。保证 fi , i

【输出格式】

输出到文件 relative.out 中。

一行一个整数,表示合法的方案数对 109 + 7 取模的结果。

【样例 1 输入】

4

0 1 1 0

【样例 1 输出】

8

题解:

首先,一个节点在以它为根的子树的方案中必为第一位

所以以它为根的子树的方案等于:

将所有子节点对应的子树的序列混合起来的方案数

因为序列顺序不能改变,所以可以变成组合问题

假设一个子树对应的序列a长为x,一个子树对应的序列b长为y,组成一个x+y的序列

所以方案数为:从x+y个位置中选x个(或y个)=>C(x+y,x)

因为这只是一对序列的方案,所以要乘f[a]*f[b]

这里f[x]是指x点的子树的方案数

在多叉树中,分叉可能大于2,这没有关系

先算出两个儿子的值,合并起来,记下合并后的方案数和大小,作为一个节点与下一个儿子合并

sum=(sum*f[v])*(C(tmp,p))    (p是子树大小,tmp是当前大小+p,sum是当前方案数)

最后f[x]=sum;

下一个问题,这个过程已经是O(n)了,求组合数如果O(n)会超时

方法是:

C(n,r)=n!/((n-r)!*r!)

n!用O(n)预处理,分母就用递推式

A[i]=(Mod-Mod/i)*A[Mod%i]%Mod

在O(n)时间内求出阶乘逆元

组合数就可以O(1)搞定了

总复杂度为O(n)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Node
{
int next,to;
}edge[];
int head[],Mod=,n,num;
long long f[],A[],B[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
long long C(int x,int r)
{
if (x==r) return ;
if (r==) return ;
long long s=B[x];
s=(s*A[x-r])%Mod;
s=(s*A[r])%Mod;
//cout<<x<<' '<<r<<' '<<s<<endl;
return s;
}
int dfs(int x,int pa)
{int i,p;
int tmp=;
long long sum=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v!=pa)
{
p=dfs(v,x);
//cout<<v<<' '<<f[v]<<' '<<p<<endl;
tmp+=p;
sum=(((sum*f[v])%Mod)*C(tmp,p))%Mod;
}
}
f[x]=sum;
//cout<<sum<<' '<<x<<endl;
return tmp+;
}
int main()
{int i,x,j;
//freopen("relative.in","r",stdin);
//freopen("relative.out","w",stdout);
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
B[]=;
for (i=;i<=n;i++)
B[i]=(B[i-]*i)%Mod;
A[]=;
for (i=;i<=n;i++)
A[i]=((Mod-(Mod/i))*(long long)A[Mod%i])%Mod;
for (i=;i<=n;i++)
A[i]=(A[i]*A[i-])%Mod;
dfs(,);
cout<<f[];
}

亲戚(relative)的更多相关文章

  1. 入门OJ:亲戚

    题目描述 或许你并不知道,你的某个朋友是你的亲戚.他可能是你的曾祖父的外公的女婿的外甥女的表姐的孙子.如果能得到完整的家谱,判断两个人是否亲戚应该是可行的,但如果两个人的最近公共祖先与他们相隔好几代, ...

  2. “fixed+relative==absolute”——对BFC的再次思考

    好久没写博客了,刚好今天跨年夜没约到什么妹子,在家宅着不如写点东西好了. 需求 昨天晚上,给公司年会做一个移动端的投票页面,遇到一个UI优化的问题: · 正文内容少于一屏时,投票提交按钮固定显示在页面 ...

  3. Position属性四个值:static、fixed、relative、absolute的区别和用法

    1.static(静态定位):默认值.没有定位,元素出现在正常的文档流中(如果设置 top, bottom, left, right, z-index这些属性就不起做作了). 2.relative(相 ...

  4. css的relative和position探究

    在CSS中,Position 属性经常会用到,主要是绝对定位和相对定位,简单的使用都没有问题,尤其嵌套起来,就会有些混乱,今记录总结一下,防止久而忘之. CSS position 属性值: absol ...

  5. Position属性四个值:static、fixed、absolute和relative的区别和用法

    Position属性四个值:static.fixed.absolute和relative的区别和用法 在用CSS+DIV进行布局的时候,一直对position的四个属性值relative,absolu ...

  6. (App.Current.RootVisual as PhoneApplicationFrame).Navigate(new Uri("/MainPage.xaml", UriKind.Relative));

    (App.Current.RootVisual as PhoneApplicationFrame).Navigate(new Uri("/MainPage.xaml", UriKi ...

  7. 辨析relative与absolute

    谈起它们,想必大家都不陌生.relative,相对定位嘛:absolute,绝对定位嘛.但是它们到底是个啥东东呢? 看看w3c的定义,见下表 定位 含义 relative 元素框偏移某个距离.元素仍保 ...

  8. 家族/亲戚(relation)

    题目描述 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚.如果x,y是 ...

  9. td在relative模式下,IE9不显示border

    方法一 .thisTd {    background-clip: padding-box;     position:relative; } 方法二 .thisTd {   z-index=-1; ...

随机推荐

  1. 简单hdfs相关操作命令

    HDFS常用操作命令 启动hdfs #start-all.sh 查看hdfs的配置文件 #cat hdfs-site.sh #hadoop fs -put /soft/jdk / #HDFS上传文件命 ...

  2. JavaScript之隐式类型转换

    布尔操作符(!.&&.||) 当使用 条件判断语句(if...else) 以及 布尔操作符(!.&&.||) 时,会调用Boolean()进行隐式类型转换 转换为fal ...

  3. Alpha第六天

    Alpha第六天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  4. Software Engineering-HW2

    title: Software Engineering-HW2 date: 2017-09-21 10:35:47 tags: HW --- 题目描述 从<构建之法>第一章的 " ...

  5. PTA題目的處理(二)

    題目7-1 計算分段函數[1] 1.實驗代碼 #include <stdio.h> int main() { float x,y; scanf("%f",&x) ...

  6. 【iOS】Swift ?和 !(详解)

    Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值, 也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化 .如果在使用变量之前不进行初始化就会报错: [ ...

  7. bzoj千题计划244:bzoj3730: 震波

    http://www.lydsy.com/JudgeOnline/problem.php?id=3730 点分树内对每个节点动态维护2颗线段树 线段树以距离为下标,城市的价值为权值 对于节点x的两棵线 ...

  8. JAVA_SE基础——14.循环结构语句

    建议有些基础的同学阅读,0基础可能会有些困难(最好看正文配合基础课本的例子) 所谓循环语句主要就是在满足条件的情况下反复执行某一个操作.Java提供了3种常用的循环语句,分别为for循环语句.whil ...

  9. 多线程里面的关键字,wait, notfiy, 锁(synchronized), lock接口

    多线程环境下,必须考虑线程同步的问题,这是因为多个线程同时访问变量或者资源时会有线程争用,比如A线程读取了一个变量,B线程也读取了这个变量,然后他们同时对这个变量做了修改,写回到内存中,由于是同时做修 ...

  10. spring-oauth-server实践:使用授权方式四:client_credentials 模式的客户端和服务端交互

    spring-oauth-server入门(1-11)使用授权方式四:client_credentials 模式的客戶端 一.客户端逻辑 1.界面入口(credentials_access_token ...