hdu 4670 Cube number on a tree(点分治)
Cube number on a tree
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1628 Accepted Submission(s): 382
There are n provinces in the country. According to the experiences from the tourists came before, every province has its own preference value. A route’s preference value from one province to another is defined as the product of all the preference value of the provinces on the route. It’s guaranteed that for each two provinces in the country there is a unique route from one to another without passing any province twice or more.
Tom is a boy crazy about cube number. A cube number is a positive integer whose cube root is also an integer. He is planning to travel from a province to another in the summer vacation and he will only choose the route with the cube number preference value. Now he want to know the number of routes that satisfy his strange requirement.
Each case begins with a number n ( 1 ≤ n ≤ 50000), the number of the provinces.
The second line begins with a number K (1 ≤ K ≤ 30), and K difference prime numbers follow. It’s guaranteed that all the preference number can be represented by the product of some of this K numbers(a number can appear multiple times).
The third line consists of n integer numbers, the ith number indicating the preference value Pi(0 ≤ Pi ≤ 1015) of the i-th province.
Then n - 1 lines follow. Each line consists of two integers x, y, indicating there is a road connecting province x and province y.
3 2 3 5
2500 200 9 270000 27
4 2
3 5
2 5
4 1
hdu 4670 Cube number on a tree(点分治) problem:
在一棵树上,求多少条路径的点权值积为立方数 solve:
和普通的求积为k的点对数很像.因为权值有10^15,所以用质因子来记录每个树的权值. 然后就是状态保存,因为当你知道当前子树的一条链时
,需要查找其它子树(同一根)是否有链与其对应使积为立方数. 质因子总共有30位,所以可以用一个longlong来记录状态,用map保存
(递归所有重心,每次计算当前重心的所有情况) hhh-2016-08-24 09:42:56
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
#define mod 1000003
using namespace std;
const ll xo = (1LL << 61)-1;
const int maxn = 50010;
int head[maxn];
int n,k,s[maxn],f[maxn],root;
int Size,tot;
bool vis[maxn];
ll factor[maxn][31],d[maxn][31],fac[31];
int facnt;
int id[maxn];
ll val;
struct node
{
int to;
int next;
} edge[maxn << 2]; void ini()
{
clr(factor,0);
clr(head,-1),clr(vis,0);
clr(s,0);
tot = 0;
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now]; ~i; i = edge[i].next)
{
if((v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size-s[now]);
if(f[now] < f[root]) root = now;
}
int num;
map<ll,ll> mp;
ll make_hash(ll q[])
{
ll t = 0; for(int i = 0; i < facnt; i++)
{
t = t*3LL + q[i];
} return t;
} void dfs(int now,int fa)
{
int v;
id[num++] = now;
s[now] = 1; for(int i = head[now]; ~i; i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
for(int j = 0; j < facnt; j++)
{
d[v][j] = (factor[v][j]+d[now][j])%3;
}
dfs(v,now);
s[now] += s[v];
}
}
ll ans = 0;
ll tp[31];
void Debug(ll t)
{
for(int i = 30; i >= 0; i--)
{
if(t & (1 << i))
printf("1");
else
printf("0");
}
cout << endl;
}
void make_ans(int now,int cnt)
{
int v ;
f[0] = Size = cnt;
get_root(now,root = 0);
vis[root] = 1;
mp.clear();
ll ts = make_hash(factor[root]);
if(ts == 0)
ans ++; for(int i = head[root]; ~i; i = edge[i].next)
{
if(vis[v = edge[i].to])
continue;
num = 0;
for(int j = 0; j < facnt; j++)
d[v][j] = factor[v][j];
dfs(v,root); for(int j = 0; j < num; j++)
{
for(int t = 0; t < facnt; t++)
{
tp[t] = (d[id[j]][t] + factor[root][t])%3;
}
ll ta = make_hash(tp); if(ta == 0)
{
ans ++;
} ta = 0;
for(int t = 0; t < facnt; t++)
ta = ta*3LL + (3LL-tp[t])%3;
if(mp[ta] > 0)
{
ans += mp[ta];
}
}
for(int j = 0; j < num; j++)
{
ll ta = make_hash(d[id[j]]);
if(mp[ta] == -1)
mp[ta] = 0;
mp[ta] ++;
}
}
for(int i = head[root]; ~i; i = edge[i].next)
{
if(vis[v = edge[i].to])
continue;
make_ans(v,s[v]);
}
}
void make_fac(int u,ll cur)
{
ll t = cur;
for(int i = 0; i < facnt; i++)
{
while(t % fac[i] == 0)
{
t /= fac[i];
factor[u][i]++;
}
factor[u][i] %= 3;
}
} int main()
{
int n,u,v;
// freopen("in.txt","r",stdin);
while( scanfi(n) != EOF)
{
ini();
scanfi(facnt);
for(int i = 0; i < facnt; i++)
scanfl(fac[i]);
for(int i = 1; i<= n; i++)
{
scanfl(val);
make_fac(i,val); }
for(int i = 1; i < n; i++)
{
scanfi(u),scanfi(v);
add_edge(u,v);
add_edge(v,u);
}
ans =0;
make_ans(1,n);
printf("%I64d\n",ans);
}
return 0;
}
hdu 4670 Cube number on a tree(点分治)的更多相关文章
- HDU 4670 Cube number on a tree
divide and conquer on tree. #include <map> #include <vector> #include <cstdio> #in ...
- HDU 4670 Cube number on a tree ( 树的点分治 )
题意 : 给你一棵树 . 树的每一个结点都有一个权值 . 问你有多少条路径权值的乘积是一个全然立方数 . 题目中给了你 K 个素数 ( K <= 30 ) , 全部权值都能分解成这k个素数 思路 ...
- HDU4670 cube number on a tree(点分治+三进制加法)
The country Tom living in is famous for traveling. Every year, many tourists from all over the world ...
- HDU4670 Cube number on a tree 树分治
人生的第一道树分治,要是早点学我南京赛就不用那么挫了,树分治的思路其实很简单,就是对子树找到一个重心(Centroid),实现重心分解,然后递归的解决分开后的树的子问题,关键是合并,当要合并跨过重心的 ...
- [hdu4670 Cube number on a tree]点分治
题意:给一个N个带权节点的树,权值以给定的K个素数为因子,求路径上节点乘积为立方数的路径条数 思路:立方数的性质是每个因子的个数为3的倍数,那么每个因子只需要保存0-2三个状态即可,然后路径就可以转化 ...
- 【点分治】【map】【哈希表】hdu4670 Cube number on a tree
求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要 ...
- 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )
在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...
- hdu 2665 Kth number
划分树 /* HDU 2665 Kth number 划分树 */ #include<stdio.h> #include<iostream> #include<strin ...
- HDU - 3584 Cube (三维树状数组 + 区间改动 + 单点求值)
HDU - 3584 Cube Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Subm ...
随机推荐
- Beta开始前准备
Beta准备 1. 讨论组长是否重选的议题和结论. 经过讨论,我们认为,经过一段时间的磨合,现任组长是不需要更换的. 2. 下一阶段需要改进完善的功能. 增加关于征信的功能,贴近选题主题 美化界面,尽 ...
- mysql基础篇 - 其他基本操作
基础篇 - 其他基本操作 其他基本操作 一.实验简介 本节实验中我们将学习并实践数据库的其他基本操作:索引.视图,导入和导出,备份和恢复等. 这些概念对于数据库管理员而言都非常重要,请 ...
- 自主学习之RxSwift(二) -----flatMap
最近项目中有这么一个需求,下面是三个网络请求 A.从服务器获取到时间戳(GET 方法,获取 timeLine) B.进行用户头像上传,获得回传的URL(POST方法,参数为 userId, timeL ...
- 洛谷P2894 [USACO08FEB]酒店Hotel
P2894 [USACO08FEB]酒店Hotel https://www.luogu.org/problem/show?pid=2894 题目描述 The cows are journeying n ...
- nyoj 寻找最大数
寻找最大数 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 请在整数 n 中删除m个数字, 使得余下的数字按原次序组成的新数最大, 比如当n=920813467185 ...
- JAVA_SE基础——50.接口关系下的多态
接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口 变量 = ...
- JAVA_SE基础——14.循环结构语句
建议有些基础的同学阅读,0基础可能会有些困难(最好看正文配合基础课本的例子) 所谓循环语句主要就是在满足条件的情况下反复执行某一个操作.Java提供了3种常用的循环语句,分别为for循环语句.whil ...
- JAVA_SE基础——1.JDK&JRE下载及安装
这是我学了JAVA来写的第一篇博客: 我首先是在传智播客领了张.毕向东老师的免费JAVA学习光盘来学习! 下面我来教大家安装使用JAVA时候必备的JDK 1.首先上甲骨文公司的官方网站下载JDK的安装 ...
- js window
window对象: browser object mode :bom对象. bom提供了独立于内容而与浏览器窗口进行交互的对象. bom主要用于管理窗口与窗口之间的通讯,因此其核心对象是window ...
- Python内置函数(24)——set
英文文档: class set([iterable]) Return a new set object, optionally with elements taken from iterable. s ...