Linux 高性能服务器编程——socket选项
#include <sys/scoket.h>
int getsockopt ( int sockfd, int level, int option_name, void* option_value, socklen_t* restrict option_len );
int setsockopt ( int sockfd, int level, int option_name, const void* option_value, socklen_t option_len);

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h> int main( int argc, char* argv[] )
{
if( argc <= 2 )
{
printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 );
int reuse = 1;
setsockopt( sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof( reuse ) ); struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port );
int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 ); ret = listen( sock, 5 );
assert( ret != -1 ); struct sockaddr_in client;
socklen_t client_addrlength = sizeof( client );
int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
}
else
{
char remote[INET_ADDRSTRLEN ];
printf( "connected with ip: %s and port: %d\n",
inet_ntop( AF_INET, &client.sin_addr, remote, INET_ADDRSTRLEN ), ntohs( client.sin_port ) );
close( connfd );
} close( sock );
return 0;
}
经过setsocketopt的设置之后,即使sock处于TIME_WAIT状态,与之绑定的socket地址也可以立即被重用。此外,我们也可以通过修改内核参数/proc/sys/net/ipv4/tcp_tw_recycle 来快速回收被关闭的socket,从而使得TCP连接根本就不进入TIME_WAIT状态,进而允许应用程序立即重用本地的socket地址。
SO_RCVBUF和SO_SNDBUF选项分别表示TCP接收缓冲区和发送缓冲区的大小。不过,当我们用setsockopt来设置TCP的接收缓冲区和发送缓冲区的大小时,系统都会将其值加倍,并且不得小于其个最小值。TCP接收缓冲区的最小值是256字节,而发送缓冲区的最小值是2048字节(不过,不同的系统可能有不同的默认最小值)。此外,我们可以直接修改内核参数/proc/sys/net/ipv4/tcp_rmem和/proc/sys/net/ipv4/tcp_wmem来强制TCP接收缓冲区和发送缓冲区的大小没有最小值限制。
#include <sys/socket.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h> #define BUFFER_SIZE 512 int main( int argc, char* argv[] )
{
if( argc <= 3 )
{
printf( "usage: %s ip_address port_number send_bufer_size\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); struct sockaddr_in server_address;
bzero( &server_address, sizeof( server_address ) );
server_address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &server_address.sin_addr );
server_address.sin_port = htons( port ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 ); int sendbuf = atoi( argv[3] );
int len = sizeof( sendbuf );
setsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, sizeof( sendbuf ) );
getsockopt( sock, SOL_SOCKET, SO_SNDBUF, &sendbuf, ( socklen_t* )&len );
printf( "the tcp send buffer size after setting is %d\n", sendbuf ); if ( connect( sock, ( struct sockaddr* )&server_address, sizeof( server_address ) ) != -1 )
{
char buffer[ BUFFER_SIZE ];
memset( buffer, 'a', BUFFER_SIZE );
send( sock, buffer, BUFFER_SIZE, 0 );
} close( sock );
return 0;
}
修改TCP接收缓冲区的服务器程序:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h> #define BUFFER_SIZE 1024 int main( int argc, char* argv[] )
{
if( argc <= 3 )
{
printf( "usage: %s ip_address port_number receive_buffer_size\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] ); struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port ); int sock = socket( PF_INET, SOCK_STREAM, 0 );
assert( sock >= 0 );
int recvbuf = atoi( argv[3] );
int len = sizeof( recvbuf );
setsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, sizeof( recvbuf ) );
getsockopt( sock, SOL_SOCKET, SO_RCVBUF, &recvbuf, ( socklen_t* )&len );
printf( "the receive buffer size after settting is %d\n", recvbuf ); int ret = bind( sock, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 ); ret = listen( sock, 5 );
assert( ret != -1 ); struct sockaddr_in client;
socklen_t client_addrlength = sizeof( client );
int connfd = accept( sock, ( struct sockaddr* )&client, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
}
else
{
char buffer[ BUFFER_SIZE ];
memset( buffer, '\0', BUFFER_SIZE );
while( recv( connfd, buffer, BUFFER_SIZE-1, 0 ) > 0 ){}
close( connfd );
} close( sock );
return 0;
}
运行结果:
[root@vm MOTO]# ./set_recv_buffer 10.8.56.201 12345 50
the tcp send buffer size after setting is 256 [root@vm MOTO]# ./set_send_buffer 10.8.56.201 12345 2000
the receive buffer size after settting is 4000
验证结果:
| 接收缓冲区set | 发送缓冲区set | 接收缓冲区(实际) | 发送缓冲区(实际) |
| 50 | 100 | 256 | 2048 |
| 129 | 1025 | 258 | 2050 |
| 200 | 2000 | 400 | 4000 |
SO_RCVLOWAT和SO_SNDLOWAT选项分别表示TCP接收缓冲区和发送缓冲区的低水位标记。它们一般被I/O复用系统调用,用来判断socket是否可读或可写。当TCP接收缓冲区中可读数据的总数大于其低水位标记时,I/O复用系统调用将通知应用程序可以从对应的socket上读取数据;当TCP发送缓冲区中的空闲空间(可以写入数据的空间)大于其低水位标记时,I/O复用系统调用将通知应用程序可以往对应的socket上写入数据。
SO_LINGER选项用于控制close系统调用在关闭TCP连接时的行为。默认情况下,当我们使用close系统调用来关闭一个socket时,close将立即返回,TCP模块负责把该socket对应的TCP发送缓冲区中残留的数据发送给对方。
#include <sys/socket.h>
struct linger
{
int l_onoff; //开启(非0)还是关闭(0)该选项
int l_linger; // 滞留时间
};
根据linger结构体中两个成员变量的不同值,close 系统调用可能产生如下3种行为之一:
- l_onoff 等于0。此时SO_LINGER选项不起作用,close用默认行为关闭socket。
- l_onoff 不为0,l_linger等于0. 此时close 系统调用立即返回,TCP模块将丢弃被关闭的socket对应的TCP发送缓冲区中残留的数据,同时给对方一个复位报文段。因此,这种情况给服务器提供了异常终止一个连接的方法。
- l_onoff不为0,l_linger大于0 。此时close的行为取决于两个条件:(1)被关闭的socket对应的TCP发送缓冲区中是否还有残留的数据;(2)该socket是阻塞的还是非阻塞的。 对于阻塞的socket,close将等待一段长为l_linger的时间,直到TCP模块发送完所有残留数据并得到对方的确认。如果这段之间内TCP模块没有发送完残留数据并得到对方的确认,那么close系统调用将返回-1并设置errno为EWOULDBLOCK。 如果socket是非阻塞的,close将立即返回,此时我们需要根据其返回值和errno来判断残留数据是否已经发送完毕。
Linux 高性能服务器编程——socket选项的更多相关文章
- Linux 高性能服务器编程——多进程编程
问题聚焦: 进程是Linux操作系统环境的基础. 本篇讨论以下几个内容,同时也是面试经常被问到的一些问题: 1 复制进程映像的fork系统调用和替换进程映像的exec系列系统调 ...
- Linux 高性能服务器编程——Linux网络编程基础API
问题聚焦: 这节介绍的不仅是网络编程的几个API 更重要的是,探讨了Linux网络编程基础API与内核中TCP/IP协议族之间的关系. 这节主要介绍三个方面的内容:套接字(so ...
- Linux 高性能服务器编程——TCP协议详解
问题聚焦: 本节从如下四个方面讨论TCP协议: TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流 TCP状态转移过程:TCP连接的任意一 ...
- Linux高性能服务器编程,书中的 shell 命令
记录<Linux高性能服务器编程>书里面讲解到的若干 shell 命令 arp 命令查看ARP高速缓存: [root@VM_0_10_centos heliang]# arp -a ? ( ...
- Linux 高性能服务器编程——多线程编程
问题聚焦: 在简单地介绍线程的基本知识之后,主要讨论三个方面的内容: 1 创建线程和结束线程: 2 读取和设置线程属性: 3 线程同步方式:POSIX信号量,互斥锁和条件变量 ...
- Linux 高性能服务器编程——I/O复用
问题聚焦: 前篇提到了I/O处理单元的四种I/O模型. 本篇详细介绍实现这些I/O模型所用到的相关技术. 核心思想:I/O复用 使用情景: 客户端程序要同时处理多个socket ...
- Linux 高性能服务器编程——高性能服务器程序框架
问题聚焦: 核心章节. 服务器一般分为如下三个主要模块:I/O处理单元(四种I/O模型,两种高效事件处理模块),逻辑单元(两种高效并发模式,有效状态机)和存储单元(不讨论). 服务器模 ...
- Linux 高性能服务器编程——Linux服务器程序规范
问题聚焦: 除了网络通信外,服务器程序通常还必须考虑许多其他细节问题,这些细节问题涉及面逛且零碎,而且基本上是模板式的,所以称之为服务器程序规范. 工欲善其事,必先利其器,这篇主要来探 ...
- Linux 高性能服务器编程——IP协议详解
1 IP服务特点 IP协议是TCP/IP协议族的动力,它为上层协议提供无状态.无连接.不可靠的服务. 无状态:IP通信双方不同步传输数据的状态信息,因此IP数据包的发送.传输和接收都是无序的. ...
随机推荐
- 关于mysql驱动包的in语句的bug
今天发现一个MySQL驱动包执行in语句的一个bug,也许会有很多人还不知道,那么跟大家分享一下. 驱动包版本:mysql-connector-java-5.1.36.jar 在使用dbutils执行 ...
- 洛谷mNOIP模拟赛Day1-斐波那契
题目背景 大样例下发链接:http://pan.baidu.com/s/1c0LbQ2 密码:jigg 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家 ...
- 【BZOJ4034】【HAOI2015】树上操作
题目请自行查阅传送门. 典型的树剖题,线段树维护操作,记一下子树在线段树内范围即可. 时间复杂度:\( O(m \log^{2} n) \) #include <stdio.h> #def ...
- hdu 5427(水)
题意:按照年龄从小到大排序 名字中可能有空格什么的,处理下即可 #include<iostream> #include<cstdio> #include<cstring& ...
- [APIO2009]
来自FallDream的博客,不经允许,请勿转载,谢谢. ------------------------------------------------------ 1.Oil 给定一个n*m的矩阵 ...
- C语言程序设计第一次作业1
(一)实验总结 1. 圆面积问题 1:求圆面积和周长 (1)输入圆的半径,计算圆的周长和面积. (2) (3) 2:判断闰年 (1)输入一个四位年份,判断其是否是闰年.闰年的判别条件是该年年份能被4整 ...
- [Luogu 1516] 青蛙的约会
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- WEB中间件--Jboss未授权访问,
1,Jboss未授权访问部署木马 发现存在Jboss默认页面,点进控制页 点击 Jboss.deployment 进入应用部署页面 也可以直接输入此URL进入 http://www.ctfswiki. ...
- 使用foreach需要判空。
今天写代码的时候,需要遍历一个作为参数传递进来的容器, 当时顺手就加上了判空条件: if(null==list)return; 后来就像,不知道遍历(foreach)有没有帮我做这个工作: 下面看实验 ...
- jquery常用函数
.text() //获得或更改元素文本: .html() //获得或更改元素标签: .val() //获得或更改input值: .css() //获得或更改元素样式: .click() //点击触发事 ...